Conformational analysis of pol-RFamide II $(Glu^1-Trp^2-Leu^3-Lys^4-Gly^5-Arg^6-Phe^7-NH_2)$ heptapeptide

Conformational analysis of pol-RFamide II $(Glu^1-Trp^2-Leu^3-Lys^4-Gly^5-Arg^6-Phe^7-NH_2)$ heptapeptide

The geometrical structure of the sea anemone and sea pansies neuropeptide Pol-RFamide II $Glu^1-Trp^2-Leu^3-Lys^4-Gly^5-Arg^6-Phe^7-NH_2$ was carried out by molecular mechanics (MM). The linkage bonds are characterised by the torsional angles $phi$, $psi$ and $omega$ and the side groups characterised by the torsional angles $mathcal{X}_1$, $mathcal{X}_2$, $mathcal{X}_3$,... subsequently. The energy-map for each monopeptide of the Pol-RFamide II was drawn in the range of -180° to 180° with increments of 20°. Conformation facilities for monopeptides were decided from these maps. These results were used in the analysis of the dipeptide $Glu^1-Trp^2$. Then, the $Glu^1$-$Trp^2$-$Leu^3$ tripeptide was examined by using the calculated results for dipeptide. Conformational analysis of the $Glu^1$-$Trp^2$-$Leu^3$-$Lys^4$ tetrapeptide was performed using the low-energy values of the tripeptide. The geometrical structure of $Glu^1-Trp^2-Leu^3-Lys^4-Gly^5-Arg^6-Phe^7-NH_2$ neuropeptide was determined by rotating the tetrapeptide $Glu^1-Trp^2-Leu^3-Lys^4$ and the dipeptide $Arg^6-Phe^7-NH_2$ about the monopeptide $Gly^5$ due to the minimisation of energy.

___

  • 1. C.J.P. Grimmelikhuijzen, K.L. Rinehart and A.N. Spencer, Biochem. Biophys. Res. Commun., 183, 375(1992).
  • 2. L. Radom, W.A. Lathan, W.J. Hehre and J.A. Pople, J. Am. Chem. Soc., 95, 693 (1973).
  • 3. N.M. Godjayev, I. Maksumov and L. Ismailova, J. Chem. Struct., 24 (4), 147 (1983).
  • 4. N.M. Godjayev, I.N. Alieva, S. Akyüz and I. Aliyev, J. Mol. Struct., 350, 173 (1995).
  • 5. J. Böcker, J. Brickman and P. Bopp, J. Phys. Chem., 98, 712 (1994).
  • 6. R.H. Boyd, R.H. Gee, J. Han and Y.J. Jin, Chem. Phys., 101 (1), 788 (1994).
  • 7. E. Orti, P.M. Viruela, J.S. Marin and F. Tomas, J. Phys. Chem., 99, 4955 (1995).
  • 8. J.J. Quirante, J. Anal. Appl. Pyrolysis., 31, 169 (1995).
  • 9. K.E. Köver, D. Jiao, S. Fang and V.J. Hruby, J. Org. Chem., 59, 991(1994).
  • 10. A.L. Waterhouse, K. Horvath and J.H. Liu, Carbohydr. Res., 235, 1 (1992).
  • 11. M. Oka, Y. Baba, A. Kagemoto and A. Nakajima, Polym. J., 21, 1011 (1989).
  • 12. E. Subramanian and J.J. Sahayamary, Int. J. Peptide Protein Res., 41, 319 (1993).
  • 13. F.A. Momany, R. F. McGuire, A.W. Bugess and H. A. Scheraga, J. Phys. Chem.,79, 2361 (1975).
  • 14. N.A. Akhmedov, G.A. Akhverdieva, N.M. Godjaev and E.M. Popv, Int. J.Peptide Protein Res., 27, 112(1986).
  • 15. L. Demir, N. Sefteroğlu, G. Budak, A. Karabulut and Y. Şahin, Il Nuovo Cimento, 19 D, 827 (1997).
  • 16. L. Demir, A. Karabulut, G., Budak, N. Sefteroğlu and Y. Şahin, Turk. J. Chem., 23, 2 57 (1999).831