Box-Behnken design for removal of uranium VI from aqueous solution using poly ethylene glycol based dicationic ionic liquid impregnated chitosan

Poly ethylene glycol bis methylimidazolium di[bis trifluoromethylsulfonyl imide] was synthesized as an ionic liquid and impregnated onto chitosan. The removal of uranium VI ions from aqueous solution was investigated with batch sorption tests using ionic liquid impregnated chitosan. Response surface methodology based on 3 level Box-Behnken design was applied to analyze the effect of initial pH 4-6 , initial concentration 20-60 mg L$^{-1} $, contact time 15-105 min , and temperature 30-50 $^{\circ}$C C on the uptake capacity of uranium VI . Main effect of initial concentration, quadratic effect of contact time, and dual effect of initial pH and contact time were found statistically significant based on analysis of variance ANOVA . Probability F-value F $=$ 1.49 x 10$^{-6} $ and correlation coefficient R$^{2} \, =$ 0.96 point out that the proposed model is compatible with experimental data. The maximum uptake capacity of uranium VI was found as 28.48 mg g$^{-1}$ at initial pH 4, initial concentration 60 mg L$^{-1}$, contact time of 70 min, and a temperature of 50 $^{\circ}$C C. Sorption kinetics followed a pseudo-second-order model and Freundlich model was obtained to fit the sorption data. The presence of competing ions slightly reduced uranium VI sorption and the selectivity order can be given as UO$_{2}^{2+}$ \textgreater Zn$^{2+}$ \textgreater Ni$^{2+}$.

___

  • 1. Xiao-teng Z, Dong-mei J, Yi-qun X, Jun-chang C, Shuai H et al. Adsorption of uranium(VI) from aqueous solution by modified Rice Stem. Journal of Chemistry 2019; 2019: 1-10. doi: 10.1155/2019/6409504
  • 2. Zhang L, Zhang X, Lu Q, Wu X, Jiang T et al. Adsorption of U(VI) ions from aqueous solution using nanogoethite powder. Adsorption Science & Technology 2019; 37 (1-2): 113-126. doi: 10.1177/0263617418816202
  • 3. Phillips DH, Gu B, Watson DB, Parmele CS. Uranium removal from contaminated groundwater by synthetic resins. Water Research 2008; 42: 260-268. doi: 10.1016/j.watres.2007.07.010
  • 4. Chen S, Hong J, Yang H, Yang J. Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. Journal of Environmental Radioactivity 2013; 126: 253-258. doi: 10.1016/j.jenvrad.2013.09.002
  • 5. Kim K-W, Kim Y-H, Lee S-Y, Lee J-W, Joe K-S et al. Precipitation characteristics of uranyl ions at different pHs depending on the presence of carbonate ions and hydrogen peroxide. Environmental Science and Technology 2009; 43 (7): 2355-2361. doi: 10.1021/es802951b
  • 6. Kumar JR, Kim J-S, Lee J-Y, Yoon H-S. A brief review on solvent extraction of uranium from acidic solutions. Separation & Purification Reviews 2011; 40 (2): 77-125. doi: 10.1080/15422119.2010.549760
  • 7. Anderson L, Armstrong DW, Wei GT. Ionic liquids in analytical chemistry. Analytical Chemistry 2006; 78 (9): 2892-2902. doi: 10.1021/ac069394o
  • 8. Nakashima K, Kubota F, Maruyama T, Goto M. Ionic liquids as a novel solvent for lanthanide extraction. Analytical Sciences 2003; 19: 1097-1098. doi: 10.2116/analsci.19.1097
  • 9. Lupa L, Voda R, Popa A. Adsorption behavior of cesium and strontium onto chitosan impregnated with ionic liquid. Separation Science and Technology 2018; 53 (7): 1107-1115. doi: 10.1080/01496395.2017.1313274
  • 10. Chen J. Application of Ionic Liquids on Rare Earth Green Separation and Utilization. Berlin, Germany: Springer, 2016. doi: 10.1007/978-3-662-47510-2
  • 11. Fontanals N, Borrull F, Marce RM. Ionic liquids in solid-phase extraction. Trac-Trends in Analytical Chemistry 2012; 41: 15-26. doi: 10.1016/j.trac.2012.08.010
  • 12. Yusuf NYM, Masdar MS, Isahak WNRW, Nordin D, Husaini T et al. Impregnated carboneionic liquid as innovative adsorbent for H2 /CO2 separation from biohydrogen. International Journal of Hydrogen Energy 2019; 44: 3414- 3424. doi: 10.1016/j.ijhydene.2018.06.155.
  • 13. Gallardo V, Navarro R, Saucedo I, Avila M, Guibal E. Zinc(II) Extraction from hydrochloric acid solutions using Amberlite XAD-7 impregnated with Cyphos IL 101 (Tetradecyl(Trihexyl)Phosphonium Chloride). Separation Science and Technology 2008; 43 (9-10): 2434-2459. doi: 10.1080/01496390802119002
  • 14. Navarro R, Alba J, Saucedo I, Guibal E. Hg(II) removal from HCl solutions using a tetraalkylphosphonium ionic liquid impregnated onto Amberlite XAD-7. Journal of Applied Polymer Science 2014; 131 (22): 1-11. doi: 10.1002/app.41086
  • 15. Yang X-Y, Zhan J-P, Guo L, Zhao H, Zhang Y et al. Solvent impregnated resin prepared using ionic liquid Cyphos IL 104 for Cr(VI) removal. Transactions of Nonferrous Metals Society of China 2012; 22 (12): 3126-3130. doi: 10.1016/S1003-6326(12)61764-6
  • 16. Guibal E, Figuerola PA, Ruiz M, Vincent T, Jouannin C et al. Immobilization of Cyphos ionic liquids in alginate capsules for Cd(II) sorption. Separation Science and Technology 2010; 45 (12-13): 1935-1949. doi: 10.1080/01496395.2010.493113
  • 17. Zhong L-x, Peng X-w, Yang D, Sun R-c. Adsorption of heavy metals by a porous bioadsorbent from lignocellulosic biomass reconstructed in an ionic liquid. Journal of Agricultural and Food Chemistry 2012; 60 (22): 5621-5628. doi: 10.1021/jf301182x
  • 18. Wang A, Li S, Chen H, Hu Y, Peng X. Synthesis and characterization of a novel microcrystalline cellulosebased polymeric bio-sorbent and its adsorption performance for Zn(II). Cellulose 2019; 26: 6849-6859. doi: 10.1007/s10570-019-02563-1
  • 19. Ren H, Li B, Neckenig M, Wu D, Li Y. Efficient lead ion removal from water by a novel chitosan gel-based sorbent modified with glutamic acid ionic liquid. Carbohydrate Polymers 2019; 207: 737-746. doi: 10.1016/j.carbpol.2018.12.043
  • 20. Guibal E. Interactions of metal ions with chitosan-based sorbents: A review. Separation and Purification Technology 2004; 38 (1): 43-74. doi: 10.1016/j.seppur.2003.10.004
  • 21. Pivarciova L, Rosskopfova O, Galambos M, Rajec P. Sorption of nickel on chitosan. Journal of Radioanalytical and Nuclear Chemistry 2014; 300 (1): 361-366. doi: 10.1007/s10967-014-3007-3
  • 22. Singh P, Nagendran R. A comparative study of sorption of chromium (III) onto chitin and chitosan. Applied Water Science 2016; 6 (2): 199-204. doi: 10.1007/s13201-014-0218-2
  • 23. Wang GH, Liu JS, Wang XG, Xie ZY, Deng NS. Adsorption of uranium (VI) from aqueous solution onto crosslinked chitosan. Journal of Hazardous Materials 2009; 168: 1053-1058. doi: 10.1016/j.jhazmat.2009.02.157
  • 24. Liu L, Yang W, Gu D, Zhao X, Pan Q. In situ preparation of chitosan/ZIF-8 composite beads for highly efficient removal of U(VI). Frontiers in Chemistry 2019; 7: 607. doi: 10.3389/fchem.2019.00607
  • 25. Eliodorio KP, Andolfatto VS, Martins MRG, de Sa BP, Umeki ER et al. Treatment of chromium effluent by adsorption on chitosan activated with ionic liquids. Cellulose 2017; 24 (6): 2559-2570. doi: 10.1007/s10570-017- 1264-3
  • 26. Tripathi N, Choppala G, Singh RS, Srivastava P, Seshadri B. Sorption kinetics of zinc and nickel on modified chitosan. Environmental Monitoring and Assessment 2016; 188 (9): 507. doi: 10.1007/s10661-016-5499-5
  • 27. Lawson J. Design and Analysis of Experiments with SAS. United States: CRC Press, 2010.
  • 28. Goodajdar BM, Soleimani S. One-pot and efficient synthesis of triazolo[1,2-a]indazole-triones catalyzed by poly(ethy lene glycol) based magnetic dicationic ionic liquid. Iranian Journal of Catalysis 2016; 6 (1): 43-49.
  • 29. Bazito FFC, Kawano Y, Torresi RM. Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium. Electrochimica Acta 2007; 52: 6427-6437. doi: 10.1016/j.electacta.2007.04.064
  • 30. Seyhan Bozkurt S, Erdogan D, Antep M, Tuzmen N, Merdivan M. Use of ionic liquid based chitosan as sorbent for preconcentration of fluoroquinolones in milk, egg, fish, bovine, and chicken meat samples by solid phase extraction prior to HPLC determination. Journal of Liquid Chromatography & Related Technologies 2016; 39 (1): 21-29. doi: 10.1080/10826076.2015.1116010
  • 31. Montgomery DC. Design and Analysis of Experiments. United States: John Wiley & Sons, Inc., 2001.
  • 32. Mourabet M, El Rhilassi A, El Boujaady H, Bennani-Ziatni M, El Hamri R et al. Removal of fluoride from aqueous solution by adsorption on hydroxyapatite (HAp) using response surface methodology. Journal of Saudi Chemical Society 2015; 16 (6): 603-615. doi: 10.1016/j.jscs.2012.03.003
  • 33. Carmona MER, Silva MAP, Leite SGF. Biosorption of chromium using factorial experimental design. Process Biochemistry 2005; 40: 779-788. doi: 10.1016/j.procbio.2004.02.024
  • 34. Yang T, Zhang W, Liu H, Guo Y. Enhanced removal of U(VI) from aqueous solution by chitosan-modified zeolite. Journal of Radioanalytical and Nuclear Chemistry 2020; 323: 1003-1012. doi: 10.1007/s10967-019-06993-w
  • 35. Wang J, Chen Z, Shao D, Li Y, Xu Z et al. Adsorption of U(VI) on bentonite in simulation environmental conditions. Journal of Molecular Liquids 2017; 242: 678-684. doi: 10.1016/j.molliq.2017.07.048
  • 36. Lagergren S. About the theory of so-called adsorption of solution substances. Kungliga Svenska Vetenskapsakademiens Handlingar 1898; 24: 147-156.
  • 37. Ho YS, Mckay G. Sorption of lead(II) ions on peat. Water Research 1999; 33: 578-584. doi: 10.1016/S0043- 1354(98)00207-3
  • 38. Mahajan G, Sud D. Kinetics and equilibrium studies of Cr(VI) metal ion remediation by Arachis Hypogea shell: a green approach. Bioresource Technology 2011; 6: 3324-3338. doi: 10.15376/biores.6.3.3324-3338
  • 39. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 1918; 40: 1361-1403.
  • 40. Freundlich HMF. Over the adsorption in solution. The Journal of Physical Chemistry 1906; 57: 385-471.
  • 41. Sprynskyy M, Kowalkowski T, Tutu H, Cukrowska EM, Buszewski B. Ionic liquid modified diatomite as a new effective adsorbent for uranium ions removal from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015; 465: 159-167. doi: 10.1016/j.colsurfa.2014.10.042
  • 42. Stopa LCB, Yamaura M. Uranium removal by chitosan impregnated with magnetite nanoparticles: adsorption and desorption. International Journal of Nuclear Energy Science and Technology 2010; 5 (4): 283-289. doi: 10.1504/IJNEST.2010.035538
  • 43. Das D, Sureshkumar MK, Koley S, Mithal N, Pillai CGS. Sorption of uranium on magnetite nanoparticles. Journal of Radioanalytical and Nuclear Chemistry 2010; 285 (3): 447-454. doi: 10.1007/s10967-010-0627-0
  • 44. Sheng L, Zhou L, Huang Z, Liu Z, Chen Q et al. Facile synthesis of magnetic chitosan nano-particles functionalized with N/O-containing groups for efficient adsorption of U(VI) from aqueous solution. Journal of Radioanalytical and Nuclear Chemistry 2016; 310 (3): 1361-1371. doi: 10.1007/s10967-016-5014-z
  • 45. Galhoum AA, Mahfouz MG, Gomaa NA, Abdel-Rehem SS, Atia AA et al. Cysteine-functionalized chitosan magnetic nano-based particles for the recovery of uranium(VI): uptake kinetics and sorption isotherms. Separation Science and Technology 2015; 50 (18): 2776-2789. doi: 10.1080/01496395.2015.1085405
  • 46. Zhou L, Shang C, Liu Z, Huang G, Adesina AA. Selective adsorption of uranium (VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins. Journal of Colloid and Interface Science 2012; 366: 165-172. doi: 10.1016/j.jcis.2011.09.069
  • 47. Anderson PR, Christensen TH. Distribution coefficients of Cd, Co, Ni and Zn in soils. European Journal of Soil Science 1988; 39: 15-22. doi: 10.1111/j.1365-2389.1988.tb01190.x
  • 48. Gu S, Kang X, Wang L, Lichtfouse E, Wang C. Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environmental Chemistry Letters 2019; 17 (2): 629-654. doi: 10.1007/s10311-018-0813-9
  • 49. Bhuvaneshwari S, Sruthi D, Sivasubramanian V, Kanthimathy K. Regeneration of chitosan after heavy metal sorption. Journal of Scientific & Industrial Research 2012; 71: 266-269.
  • 50. Schwarz S, Schwarz D, Ohmann W, Neuber S. Adsorption and desorption studies on reusing chitosan as an efficient adsorbent. Proceedings of the 3rd World Congress on Civil, Structural, and Environmental Engineering (CSEE’18) 2018; 1-4. doi: 10.11159/awspt18.128