Biodegradability study of polypropylene fibers blended with disposable recycled poly(lactic acid) plastic flakes

Biodegradability study of polypropylene fibers blended with disposable recycled poly(lactic acid) plastic flakes

Polymer blending as an efficient method for blending at least two polymers is usually used to create newmaterials with desirable physical properties. This article focuses on the biodegradability evaluation of polypropylene(PP) fibers modified with disposable recycled poly(lactic acid) (r-PLA) plastic flakes. Biodegradable modified PP fiberscontaining 30% r-PLA were prepared by melt spinning process and evaluated with different methods of biodegradationassays. The soil burial test method, CO2 evolution analysis, weight loss, mechanical properties, and average molecularweight measurements and analysis of surface morphological changes were performed for biodegradability evaluation of themodified PP fibers. Surface morphology of the blend fibers illustrated that by increasing the soil burial period cracks wereformed on the surfaces of fibers. While different testing methods showed different values for the biodegradation process,the results obtained from the CO2 evolution analysis, weight loss, and variation of mechanical properties confirmed agood agreement between different degradation methods. After incubation in soil for a long period of time, the initialmoduli and tenacity of the modified fibers decreased up to 72% and 53%, respectively. In addition, the average molecularweight measurement showed a 28% decrease in average molecular weight after 80 days of soil burial.

___

  • 1. Griffin, G. J. L. Org. Coat. Plast. Chem. 1973, 33, 88-96.
  • 2. Tsi, H. Y.; Tsen, W.C.; Shu, Y. C.; Chuang, F.S.; Chen, C.C. Polym. Test. 2009, 28, 875-885.
  • 3. Huang, C. L.; Jiao, L.; Zeng, J. B.; Zhang, M.; Xiao, L. P.; Yang, K. K.; Wang, Y. Z. Polym. 2012, 53, 3780-3790.
  • 4. Chandra, R.; Rustgi, R. Polym. Degrad. Stab. 1997, 56, 185-202.
  • 5. Taguet, A.; Bureau, M. N.; Huneault, M. A.; Favis, B. D. Carbohyd. Polym. 2014, 114, 222-229.
  • 6. Tajeddin, B.; Rahman, R. A.; Abdulah, L. C. Int. J. Biol. Macromol. 2010, 47, 292-297.
  • 7. Moura, I.; Machado, A. V.; Duarte, F. M.; Botelho, G.; Nogueira, R. Mater. Sci. Forum 2008, 587, 520-524.
  • 8. Kumar, V. In ICAPM 2013, Proceedings of the International Conference on Advanced Polymeric Materials; Mahatma Gandhi University: Agra, India, 2013.
  • 9. Bijarimi, M.; Piah M.; Sahrim, A.; Rozaidi, R. In: ICACES 2012, Proceedings of the International Conference on Agriculture: Dubai, United Arab Emirates, 2012.
  • 10. Tavanaie, M. A. Polym. Plast. Technol. Eng. 2014, 53, 742-751.
  • 11. Tavanaie, M. A.; Mahmudi, A. Polym. Plast. Technol. Eng. 2014, 53, 1506-1517.
  • 12. Guo, W.; Tao, J.; Yang, C.; Song, C.; Geng, W.; Li, Q.; Wang, Y.; Kong, M.; Wang, S. PLoS One 2012, 7, e38341.
  • 13. Choudhary, P.; Mohanty, S.; Nayak, S. K.; Unnikrishnan, L. J. Appl. Polym. Sci. 2011, 121, 3223-3237.
  • 14. Park, C. H.; Hong, E. Y.; Kang, Y. K. J. Appl. Polym. Sci. 2007, 103, 3099-3104.
  • 15. Schindler, A.; Harper, D. J. Polym. Sci. A Polym. Chem. 1979, 17, 2593-2599.
  • 16. Yuan, X.; Mak, A. F.; Kwok, K. W.; Yung, B. K.; Yao, K. J. Appl. Polym. Sci. 2001, 81, 251-260.
  • 17. Fambri, L.; Pegoretti, A.; Fenner, R.; Incardona, S. D.; Migliaresi, C. Polymer 1997, 38, 79-85.
  • 18. Solomon, O. F.; Ciut?, I. Z. J. Appl. Polym. Sci. 1962, 6, 683-686.
  • 19. Pamies, R.; Cifre, J. G. H.; Martffnez, M. D. C. L.; de la Torre, J. G. Colloid Polym. Sci. 2008, 286, 1223-1231.