An evaluation of the adsorption dynamics of phosphate ions onto Fe(II)-montmorillonites

An evaluation of the adsorption dynamics of phosphate ions onto Fe(II)-montmorillonites

Fe(II)-montmorillonites (Fe(II)-MMTs) were prepared by mixing solutions of Fe(II) and montmorillonite atpH 3.5. Two different Fe(II)-MMTs were prepared and the ferrous iron contents were 40 mg/L and 80 mg/L. All samples were characterized by XRD, FT-IR, TGA, DSC, and nitrogen adsorption. By nitrogen adsorption, the pore size can be obtained in the pore diameter curve with average pore widths of 6.67 nm, 9.96 nm, and 17.07 nm, respectively. Theremoval rate of phosphate increased rapidly during the first 40 min, in which Fe(II)-MMT (1) and Fe(II)-MMT (2) were stronger adsorption systems than MMT. The maximum adsorption was 48.38 mg/g at pH 2.0. The kinetics of phosphateadsorption were better described using pseudo-second-order models (R2: 0.997, 0.999, 1.000) than pseudo-first-order(R2 : 0.933, 0.900, 0.760). R2is the determinable statistic coefficient that measures the goodness of fit. If the R2valueis closer to one, the fitting degree of the regression line is better. By the thermodynamic analyses, we obtained the∆G°and ∆H°of samples at 298 °C, 303 °C, and 310 °C. The adsorption isotherms also better fitted a Langmuir modelin which the process was nonspontaneous and exothermic.

___

  • 1. Noordzij, M.; Korevaar, J. C.; Boeschoten, E. W.; Dekker, F. W.; Bos, W. J.; Krediet, R. T. Am. J. Kidney Dis. 2005, 46, 925-932.
  • 2. Isakova, T.; Gutiérrez, O. M.; Wolf, M. Kidney Int. 2009, 76, 705-716
  • 3. Molony, D. A.; Stephens, B. W. Adv. Chronic. Kidney D. 2011, 18, 120-131.
  • 4. Goldberg, S; Forester, H. S.; Godfrey, C. L. Soil. Sci. 1996, 60, 425-432.
  • 5. Murphy, J.; Riley, J. P. Anal. Chim. Acta 1962, 27, 31-36.
  • 6. Richens, D.T. The Chemistry of Aqua Ions; Wiley: Chichester, UK, 1997.
  • 7. Sinha, A.; Prasad, N. Clin. Phys. 2014, 3, 38-45.
  • 8. Nahla, A. A.; Edress, A. M. Nucl. Sci. Techn. 2016, 1, 120-127.
  • 9. Gulati, A.; Sridhar, V.; Bose, T.; Hari, P.; Bagga, A. Int. Urol. Nepgrol. 2010, 42, 1055-1062.
  • 10. Gregg, S. J.; Sing, K. S. W. J. Colloid Interf. Sci. 1983, 94, 2.
  • 11. Gros, B.; Galán, A.; Gonzálezparra, E.; Herrero, J. A.; Echave, M.; Vegter, S.; Tolley, K.; Oyagüez, I. Health. Econ. Rev. 2015, 5, 1-9.
  • 12. Subramaniam, M. D.; Kim, I. H. J. Anim. Sci. Biotechno. 2016, 1, 41-49.
  • 13. Freundlich, H.; Heller, W. J. Am. Chem. Soc. 1939, 61, 2228-2230.
  • 14. Zhai, C. J.; Yang, X. W.; Sun, J.; Wang, R. Int. Urol. Nephrol. 2015, 47, 527-535.
  • 15. Stein, D. R.; Feldman, H. A.; Gordon, C. M. Pediatr. Nephrol. 2012, 27, 1341-1350.
  • 16. Lin, J.; Jiang, B.; Zhan, Y. J. Environ. Manage. 2018, 217, 183-195.
  • 17. Qu, X. Y.; Chen, J. F.; He, C. Q.; Chi, F.; Johnston, S. L. Livest. Sci. 2018, 210, 15-20.
  • 18. Levin, A.; Foley, R. N. Am. J. Kidney Dis. 2000, 36, 24-30.
  • 19. Locatelli, F.; Marcelli, D.; Conte, F.; D’Amico, M.; Del, V. L.; Limido, A.; Malberti, F.; Spotti, D. Nephrol. Dial. Transpl. 2000, 15, 69.
  • 20. Levin, A.; Foley, R. N. Am. J. Kidney Dis. 2000, 36, 24-30.
  • 21. Wu, Y.; Zhou, N.; Li, W.; Gu, H.; Fan, Y.; Yuan, J. Mat. Sci. Eng. 2013, 33, 752-757.
  • 22. Zhou, N.; Fang, S.; Xu, D.; Zhang, J.; Mo, H.; Shen, J. Appl. Clay. Sci. 2009, 46, 401-403.
  • 23. Parida, U. K.; Nayak, A. K.; Binhani, B. K.; Nayak, P. L. J. Biomater. Tiss. Eng. 2011, 2, 414-425.
  • 24. Chen, Y.; Bo, L.; Zhou, A.; Liang, J. Acta Mater. Compos. Sin. 2010, 6, 237-260.
  • 25. Wang, L.; Chen, J. W.; Ren, F. M.; Wei-Bing, X. U.; Zhou, Z. F. China J. 2012.
  • 26. Wang, S. Chinese. J. Polym. Sci. 2014, 6, 675-680.
  • 27. Langmuir, I. J. Am. Chem. Soc. 1915, 37, 208-235.
  • 28. Borgnino, L.; Giacomelli, C. E.; Avena, M. J.; Pauli, C. Prog. Coll. Pol. Sci. S. 2010, 353, 238-244.
  • 29. Borgnino, L.; Avena, M. J.; Pauli, C. Colloid. Surface. A 2009, 341, 46-52.
  • 30. Freundlich, H.; Heller, W. J. Am. Chem. Soc. 2002, 61, 861-870.
  • 31. Taddei, S.; Nami, R.; Bruno, R. M.; Quatrini, I.; Nuti, R. Heart Fail. Rev. 2011, 16, 615-620.
  • 32. Dékány, V.; Seefeld, G.; Lagaly, G. Clay Miner. 2000, 5, 763-769.
  • 33. Corvis, Y.; Négrier, P.; Espeau, P. J. Pharm. Sci. 2011, 12, 5235-5243.
  • 34. Shi, X.; Rosa, R.; Lazzeri, A. Langmuir 2010, 26, 8474-8482.
  • 35. Li, Q.; Du, Y. Z.; Yuan, H., Zhang, X. G.; Miao, J.; Cui, F. D.; Hu, F.Q. Eur. J. Pharm. Sci. 2010, 41, 3-4.
  • 36. Tuomasjukka, S. S.; Viitanen, M. H.; Kallio, H. P. J. Nutr. Biochem. 2009, 20, 909-915.
  • 37. Koseki, T.; Onishi, H.; Takahashi Y. P. Soc. Photo-Opt. Ins. 2008, 56, 10.
  • 38. Li, Y.; Weng, W. J. Mater. Sci. 2008, 19, 19-25.
  • 39. Cheng, Y.; Song, W.; Cheng J.; Zhao, B. J. Colloid Interf. Sci. 2007, 307, 447-454.
  • 40. Lim, M. S.; Feng, K.; Chen, X.; Wu, N. Q.; Raman, A.; Nightingale, J.; Gawalt, E. S.; Korakakis, D.; Hornak, L. A.; Timperman, A. T. Langmuir 2007, 23, 5.
  • 41. Pleite, R.; Martínez-Force, E.; Garcés, R. J. Agr. Food. Chem. 2006, 54, 9383-9388.
  • 42. Mensink, R. P. Lipids. 2006, 40, 1201-1205.