Effect of Fe substitution on the partial oxidation of methane to syngas over La0:7 Sr0:3 Co1?y Fey O3? perovskites

In this research, a series of La0:7 Sr0:3 Co1?y Fey O3? (y = 0.0–0.4) was successfully synthesized by a solidstatereaction method and syngas production studies were performed using gas chromatography. Thermogravimetricanalysis characterized the concentration of Fe3+ , which gave a low H2 /CO ratio over La0:7 Sr0:3 Co1?y Fey O3? withoutthe presence of molecular oxygen. All samples possessed a purely rhombohedral structure. The incorporation of moreFe increased the lattice parameter and changed XRD peaks of the La1?x Srx Co0:8 Fe0:2 O3 from sharp and single todouble. Among the catalyst powders tested for syngas production activity, La0:7 Sr0:3 Co0:6 Fe0:4 O3? (y = 0.4) hadthe low molar ratio of H2 /CO with high content of Fe3+ at 850 °C.

___

  • 1. Wu, H. W.; Lin, K. W. Int. J. Hydrogen. Energ. 2018, 43, 6804-6814.
  • 2. De Santana Santos, M.; Neto, R. C. R.; Noronha, F. B.; Bargiela, P.; da Rocha M. G. C.; Resini, C.; Carbo-Argibay,E.; Frety, R.; Bandao, S. T. Catal. Today. 2018, 299, 229-241.
  • 3. Guo, S.; Wu, H.; Puleo, F.; Liotta, L. F. Catalysts 2015, 5, 366-391.
  • 4. Sammells, A. F.; Mundschau, M.V. Nonporous Inorganic Membranes: For Chemical Processing; John Wiley & Sons: Weinheim, Germany, 2006.
  • 5. Brandon, N. Solid Oxide Fuel Cell Lifetime and Reliability: Critical Challenges in Fuel Cells; Academic Press: London, United Kingdom, 2017.
  • 6. Petric, A.; Huang, P.; Tietz, F. Solid. State Ionics 2000, 135, 719-725.
  • 7. Scott, S. P.; Mantzavinos, D.; Hartley, A.; Sahibzada, M.; Metcalfe, I. S. Solid State Ionics 2002, 152-153, 777-781.
  • 8. Murwani, I. K.; Scheurell, S.; Feist, M.; Kemnitz, E. ￿J. Therm. Anal. Calorim. 2002, 69, 9-21.
  • 9. Sunarso, J.; Hashim, S. S.; Zhu, N.; Zhou, W. Prog. Energ. Combust. 2017, 61, 57-77.
  • 10. Merino, N. A.; Barbero, B. P.; Ruiz, P., Cadús, L. E. J. Catal. 2006, 240, 245-257.
  • 11. Hayashi, H.; Inaba, H.; Matsuyama, M.; Lan, N. G.; Dokiya, M.; Tagawa, H. Solid State Ionics 1999, 122, 1-15.
  • 12. Feng, C.; Ruan, S.; Li, J.; Zou, B.; Luo, J.; Chen, W.; Dong, W.; Wu, F. Sensor. Actuat. B Chem. 2011, 155, 232-238.
  • 13. Rousseau, S.; Loridant, S.; Delichere, P.; Boreave, A.; Deloume, J. P.; Vernoux, P. Appl. Catal. B Environ. 2009, 88, 438-447.
  • 14. Zhang, X.; Li, H.; Li, Y.; Shen, W. Chinese J. Catal. 2012, 33, 1109-1114.
  • 15. Berry, F. J.; Gancedo, J. R.; Marco, J. F.; Ren, X. Hyperfine. Interact. 2005, 166, 449-453.
  • 16. Castaño, M. H.; Molina, R.; Moreno, S. Catalysts 2015, 5, 905-925.
  • 17. Patra, H.; Rout, S. K.; Pratihar, S. K.; Bhattacharya, S. Powder. Technol. 2011, 209, 98-104.
  • 18. Cheng, X.; Wang, H.; Wei, Y.; Li, K.; Zhu, X. J. Rare Earth. 2010, 28, 316-321.
  • 19. Xia, Y.; Sakai, T.; Fujieda, T.; Yang, X. Q.; Sun, X.; Ma, Z. F.; McBreen, J.; Yoshio, M. J. Electrochem. Soc. 2001, 148, A723-A729.
  • 20. Li, K.; Wang, H.; Wei, Y.; Yan, D. Appl. Catal. B Environ. 2010, 97, 361-372.
  • 21. Aliyatulmuna, A.; Utomo, W. P.; Burhan, R. Y. P.; Fansuri, H.; Murwani, I. K. Asian. J. Chem. 2017, 29, 2191-2196.