Vietnamese Ganoderma: growth, peculiarities, and low-molecular composition compared to European and Siberian strains

Vietnamese Ganoderma: growth, peculiarities, and low-molecular composition compared to European and Siberian strains

The species from the genus Ganoderma are known to be extremely important macrofungi in fundamental biological, medicinal, and socioeconomic aspects. The present communication describes the brief morphological description, macro- and microscopic details, and chemical constituents of the representatives of five species of Ganoderma mushroom collected from different sites in Vietnamese National Parks. These species were Ganoderma colossus, G. neojaponicum, G. cattienensis, G. lucidum, and G. applanatum. Three additional herbarium strains of Ganoderma from European and Siberian regions have been implemented in the present framework for the purposes of comparison.Cultural characterization on solid and liquid fermentation, and scanning electron microscopy of morphology along with chemical analysis served as the supporting identification and comparison factors. Low-molecular-weight chemical constituents were evaluated bygaschromatography massspectrometryandgas-liquidchromatographytechniques.Valuablesubstances(2-monolinolein,2,3-dihydroxypropyl elaidate, fatty alcohol, fatty acid alkyl esters, and free fatty acids) detected in pigmented mycelia and submerged cultures have promising biotechnological applications including in food supplements, lipid-based drug delivery systems, and biodiesel-related items. The representative voucher specimens were deposited at the Herbarium of the Southern Institute of Ecology (Ho Chi Minh City, Vietnam) and were assigned accession numbers.

___

  • Adaskaveg JE, Gilbertson RL (1986). Cultural studies and genetics of sexuality of Ganoderma lucidum and G. tsugae in relation to the taxonomy of the G. lucidum complex. Mycologia 78: 694–705.
  • Adaskaveg JE, Gilbertson RL (1989). Cultural studies of four North American species in the Ganoderma lucidum complex with comparisons to G. lucidum and G. tsugae. Mycol Res 92: 182–191.
  • Aime MC, Henkel TW, Ryvarden L (2003). Studies in neotropical polypores 15: new and interesting species from Guyana. Mycologia 95: 614–619.
  • Buchalo AS, Šašek V, Zakordonec OA (1985). Scanning electron microscopic study of anamorphs of some Basidiomycetes in culture. Folia Microbiol 30: 506–508.
  • Buchalo AS, Šašek V, Zakordonec OA (1989). Scanning electron microscopic study of vegetative mycelium of higher Basidiomycetes.Folia Microbiol 34: 146–150.
  • Buchalo AS, Zakordonec OA, Šašek V (1983). Scanning electron microscopic study of clamp connections in higher Basidiomycetes. Folia Microbiol 28: 420–423.
  • Cao Y, Wu SH, Dai YC (2012). Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal Divers 56: 49–62.
  • Carballeira NM (2008). New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents. Prog Lipid Res 47: 50–61.
  • Chen ZJ, Yang ZD, Gu ZX (2010). Determination of volatile flavor compounds in Ganoderma lucidum by HS-SPME-GC-MS. Food Res Develop 31: 132–135.
  • Comer EJH (1989). Ad Polyporaceas V. Beihefte zur Nova Hedwigia 96: 1–218.
  • Corner EJH (1994). The structure of Piptoporus betulinus. Mycologist 8: 138–140.
  • De S. Pereira-Jr JA, Rodrigues DP, Peixoto-Filho RC, Bastos IVGA, De Oliveira GG, Araújo JM, Melo SJ (2013). Contribution to pharmacognostic and morphoanatomical studies, antibacterial and cytotoxic activities of Ganoderma parvulum Murrill (Basidiomycota, Polyporales, Ganodermataceae). Lat Am J Pharm 32: 996–1003.
  • Douanla-Meli C, Langer E (2009). Ganoderma carocalcareus sp. nov., with crumbly-friable context parasite to saprobe on Anthocleista nobilis and its phylogenetic relationship in G. resinaceum group. Mycol Prog 8: 145–155.
  • Fukuzawa M, Yamaguchi R, Hide I, Chen Z, Hirai Y, Sugimoto A, Yasuhara T, Nakata Y (2008). Possible involvement of long chain fatty acids in the spores of Ganoderma lucidum (Reishi Houshi) to its anti-tumor activity. Biol Pharm Bull 31: 1933–1937.
  • Gao Y, Zhou S, Huang M, Xu A (2003). Antibacterial and antiviral value of the genus Ganoderma P. Karst. species (Aphyllophoromycetideae): a review. Int J Med Mush 5: 1–12.
  • Hawksworth DL (2004). Fungal diversity and its implications for genetic resource collections. Stud Mycol 50: 9–18.
  • Hong SG, Jung HS (2004). Phylogenetic analysis of Ganoderma based on nearly complete mitochondrial small-subunit ribosomal DNA sequences. Mycologia 96: 742–755.
  • Hung PV, Nhi NNY (2012). Nutritional composition and antioxidant capacity of several edible mushrooms grown in the Southern Vietnam. Int Food Res Technol 19: 611–615.
  • Index Fungorum. Website http://www.indexfungorum.org/Names/Names.asp [accessed 10 October 2015].
  • Kour H, Kumar S, Sharma YP (2013). Two species of Strobilomycesfrom Jammu and Kashmir, India. Mycosphere 4: 1006–1013.
  • Lau BF, Abdullah N, Aminudin N, Lee HB, Yap KC, Sabaratnam V (2014). The potential of mycelium and culture broth of Lignosus rhinocerotis as substitutes for the naturally occurring Sclerotium with regard to antioxidant capacity, cytotoxic effect, and low-molecular-weight chemical constituents. PloS ONE 9:e102509.
  • Le XT, Le QHN, Pham ND, Dentinger BT, Moncalvo JM (2012). Tomophagus cattienensis sp. nov., a new Ganodermataceae species from Vietnam: evidence from morphology and ITS DNA barcodes. Mycol Prog 11: 775–780.
  • Liu Y, Chen T (Ting), Yang M, Wang C, Huo W, Yan D, Chen J (Jinjin), Zhou J, Xing J (2014). Analysis of mixtures of fatty acids and fatty alcohols in fermentation broth. J Chromatogr A 1323: 66–72.
  • Liu YW, Gao JL, Guan J, Qian ZM, Feng K, Li SP (2009). Evaluation of antiproliferative activities and action mechanisms of extracts from two species of Ganoderma on tumor cell lines. J Agric Food Chem 57: 3087–3093.
  • Marekov I, Momchilova S, Grung B, Nikolova-Damyanova B (2012). Fatty acid composition of wild mushroom species of order Agaricales - examination by gas chromatography-mass spectrometry and chemometrics. J Chromatogr B 910: 54–60.
  • Mayzumi F, Okamoto H, Mizuno T (1997). IV. Cultivation of reishi (Ganoderma lucidum). Cultivation of reddish reishi (Ganoderma lucidum, Red). Food Rev Int 13: 365–370.
  • Moncalvo JM (2000). Systematics of Ganoderma 2. In: Flood J, Bridge PD, Holderness M, editors. Ganoderma Diseases of Perennial Crops. New York, NY, USA: CABI Publishing.Moncalvo JM (2005).
  • Molecular systematics of Ganoderma: what is reishi? Int J Med Mush 7: 353–354.
  • Mortimer PE, Karunarathna SC, Li Q, Gui H, Yang X (Xueqing), Yang X (Xuefei), He J, Ye L, Guo J, Li H et al. (2012). Prized edible Asian mushrooms: ecology, conservation and sustainability. Fungal Divers 56: 31–47.
  • Nielsen LS, Schubert L, Hansen J (1998). Bioadhesive drug delivery systems: I. Characterisation of mucoadhesive properties of systems based on glyceryl mono-oleate and glyceryl monolinoleate. Eur J Pharm Sci 6: 231–239.
  • Oei P (2003). Mushroom Cultivation: Appropriate Technology for Mushroom Growers. Leiden, Netherlands: Backhuys Publishers.
  • Ofodile LN, Uma N, Grayer RJ, Ogundipe OT, Simmonds MSJ (2012). Antibacterial compounds from the mushroom Ganoderma colossum from Nigeria. Phytother Res 26: 748–751.
  • Osińska-Jaroszuk M, Jaszek M, Mizerska-Dudka M, Błachowicz A, Rejczak TP, Janusz G, Wydrych J, Polak J, Jarosz-Wilkołazka A, Kandefer-Szerszeń M (2014). Exopolysaccharide from Ganoderma applanatum as a promising bioactive compound with cytostatic and antibacterial properties. BioMed Res Int: 1–10 ID 743812 http://dx.doi.org/10.1155/2014/743812.
  • Prasad Y, Wesely WEG (2008). Antibacterial activity of the bio-multidrug (Ganoderma lucidum) on multidrug resistant Staphylococcus aureus (MRSA). Adv Biotech 10: 9–16.
  • Powell MR (2002). A model for probabilistic assessment of phytosanitary risk reduction measures. Plant Dis 86: 552–557.
  • Ryvarden L (2000). Studies in neotropical polypores 2: A preliminary key to neotropical species of Ganoderma with a laccate pileus. Mycologia 92: 180–191.
  • Schwarze FW (2007). Wood decay under the microscope. Fungal Biol Rev 21: 133–170.
  • Sivaprakasam E, Balakumar R, Kavitha D (2011). Evaluation of antibacterial and antifungal activity of Ganoderma lucidum(Curtis) P. Karst fruit bodies extracts. World J Sci Tech 1: 8–11.
  • Song CH, Cho KY, Nair NG, Vine J (1989). Growth stimulation and lipid synthesis in Lentinus edodes. Mycologia 81: 514–522.
  • Szedlay G, Jakucs E, Boldizsar I, Boka K (1999). Basidiocarp and mycelium morphology of Ganoderma lucidum Karst. strains isolated in Hungary. Acta Microbiol Immunol Hung 46: 41–52.
  • Tsivileva OM, Pankratov AN, Nikitina VE (2010). Extracellular protein production and morphogenesis of Lentinula edodes in submerged culture. Mycol Prog 9: 157–167.
  • Waksman SA, Horning ES, Spencer EL (1943). Two antagonistic fungi, Aspergillus fumigatus and Aspergillus clavatus, and their antibiotic substances. J Bacteriol 45: 233.
  • Wang X (Xiaosan), Liang L, Yu Z, Rui L, Jin Q, Wang X (Xingguo) (2014). Scalable synthesis of highly pure 2-monoolein by enzymatic ethanolysis. Eur J Lipid Sci Tech 116: 627–634.
  • Watling R (1979). The morphology, variation and ecological significance of anamorphs in Agaricales. In: Kendrick B, editor. The Whole Fungus. Ottawa, Canada: National Museum, pp. 453–472.
  • Wu GS, Guo JJ, Bao JL, Li XW, Chen XP, Lu JJ, Wang YT (2013). Anti-cancer properties of triterpenoids isolated from Ganoderma lucidum - a review. Exp Opin Inv Drugs 22: 981–992.
  • Wu SH, Zhang X (2003). The finding of three Ganodermataceae species in Taiwan. Collect Res 16: 61–66.
  • Zabara A, Mezzenga R (2014). Controlling molecular transport and sustained drug release in lipid-based liquid crystalline mesophases (Review). J Control Release 188: 31–43.