Phytoplankton functional groups provide a quality assessment method by the Q assemblage index in Lake Mogan (Turkey)
The aim of this research is to test the Q phytoplankton assemblage index based on phytoplankton functional groups in Lake Mogan and to provide a quality state estimation by data from 2006. Phytoplankton was sampled at 2 stations of the lake, paralleled with physical (water temperature, Secchi depth, pH, conductivity) and chemical (DO, chlorophyll-a, alkalinity, total hardness, soluble reactive phosphorus, total phosphorus, NO2-N, NO3-N, NH3-N) analyses. The Q index was able to follow the main seasonal changes of the physical and chemical parameters and indicated a moderate ecological status for Lake Mogan. Phytoplankton biomass varied between 0.75 and 10.12 mg/L in the research period, and provided a similar ecological state by Q index, chlorophyll-a, total phosphorus, and Secchi depth. A total of 76 phytoplankton species were identified in the study period, belonging to 12 functional groups. The seasonal succession of dominant functional groups followed this sequence of coda: X2 (Chlamydomonas), Lo (Merismopedia, Peridinium, Chroococcus), F (Botryococcus, Sphaerocystis, Oocystis, Planktosphaeria), S1 (Phormidium, Planktothrix), M (Microcystis), and F (Botryococcus, Oocystis).
Phytoplankton functional groups provide a quality assessment method by the Q assemblage index in Lake Mogan (Turkey)
The aim of this research is to test the Q phytoplankton assemblage index based on phytoplankton functional groups in Lake Mogan and to provide a quality state estimation by data from 2006. Phytoplankton was sampled at 2 stations of the lake, paralleled with physical (water temperature, Secchi depth, pH, conductivity) and chemical (DO, chlorophyll-a, alkalinity, total hardness, soluble reactive phosphorus, total phosphorus, NO2-N, NO3-N, NH3-N) analyses. The Q index was able to follow the main seasonal changes of the physical and chemical parameters and indicated a moderate ecological status for Lake Mogan. Phytoplankton biomass varied between 0.75 and 10.12 mg/L in the research period, and provided a similar ecological state by Q index, chlorophyll-a, total phosphorus, and Secchi depth. A total of 76 phytoplankton species were identified in the study period, belonging to 12 functional groups. The seasonal succession of dominant functional groups followed this sequence of coda: X2 (Chlamydomonas), Lo (Merismopedia, Peridinium, Chroococcus), F (Botryococcus, Sphaerocystis, Oocystis, Planktosphaeria), S1 (Phormidium, Planktothrix), M (Microcystis), and F (Botryococcus, Oocystis).
___
- Akbulut Emir N, Akbulut A (2002). The plankton composition of Lake Mogan in Central Anatolia. Zool Middle East 27: 107–
- Albay M, Akçaalan R (2003). Factors influencing the phytoplankton steady state assemblages in a drinking water reservoir (Ömerli reservoir, Istanbul). Hydrobiologia 502: 85–95.
- APHA (1995). Standard Methods for the Examination of Water and Wastewater. American Public Health Association. 19th ed. Washington, DC, USA: APHA.
- Atay D, Bakan AN (1992). Mogan Gölünün ilk ürünü ve ilk ürüne göre balık ürününün tahmin edilmesi üzerine bir araştırma. Akdeniz Üniversitesi Su Ürünleri Muhendisliği Dergisi 3: 1–26 (article in Turkish).
- Atici T, Obali O, Altindag A, Ahiska S, Aydin D (2010). The accumulation of heavy metals (Cd, Pb, Hg, Cr) and their state in phytoplanktonic algae and zooplanktonic organisms in Beysehir Lake and Mogan Lake, Turkey. Afr J Biotechnol 9: 475–487.
- Aykulu G, Obalı O, Gönülol A (1983). Distribution of phytoplankton in some lakes around Ankara. Doğa Temel Bilimler 7: 277–287.
- Borges PAF, Train S, Rodriguez LC (2008). Spatial and temporal variation of phytoplankton in two subtropical Brazilian reservoirs. Hydrobiologia 607: 63–74.
- Boyd CE, Tucker CS (1998). Pond Aquaculture Water Quality Management. Norwell, MA, USA: Kluwer.
- Burnak L, Beklioğlu M (2000). Macrophyte-dominated clearwater state of Lake Mogan. Turk J Zool 24: 305–313.
- Çelik K, Ongun T (2008). Spatial and temporal dynamics of the steady-state phytoplankton assemblages in a temperate shallow hypertrophic lake (Lake Manyas, Turkey). Limnology 9: 115–123.
- Çok İ, Ulutaş OK, Okuşluk Ö, Durmaz E, Demir N (2011). Evaluation of DNA damage in common carp (Cyprinus carpio L.) by comet assay for determination of possible pollution in Lake Mogan (Ankara). ScientificWorldJournal 11: 1455–1461.
- Cox EJ (1996). Identification of Freshwater Diatoms from Live Material. London, UK: Chapman and Hall.
- Crossetti LO, Bicudo CEM (2005). Structural and functional phytoplankton responses to nutrient impoverishment in mesocosms placed in a shallow eutrophic reservoir (Garcas Pond), Sao Paulo, Brazil. Hydrobiologia 541: 71–85.
- Crossetti LO, Bicudo CEM (2008). Phytoplankton as a monitoring tool in a tropical urban shallow reservoir (Garcas Pond): the assemblage index application. Hydrobiologia 610: 161–173.
- Devercelli M, O’Farrell I (2013). Factors affecting the structure and maintenance of phytoplankton functional groups in a nutrient rich lowland river. Limnologica 43: 67–78.
- Fakıoğlu Ö, Pulatsü S (2005). Determination of external phosphorus loading in Mogan Lake (Ankara) following some restoration measures. YYU J Agr Sci 15: 63–69 (article in Turkish with English abstract).
- Gecheva G, Yurukova L, Chesmedjiev S (2013). Patterns of aquatic macrophyte species composition and distribution in Bulgarian rivers. Turk J Bot 37: 99–110.
- Guiry MD, Guiry GM (2013). AlgaeBase. Galway, Ireland: National University of Ireland. Available at http://www.algaebase.org (accessed 17 September 2013).
- Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999). Biovolume calculation for pelagic and benthic microalgae. J Phycol 35: 403–424.
- John DM, Whitton BA, Brook AJ (2002). The Freshwater Algal Flora of The British Isles. Cambridge, UK: Cambridge University.
- Komarek J, Anagnostidis K (1999). Cyanoprokaryota 1. Teil: Chroococcales (Süsswasserflora von Mitteleuropa). Heidelberg, Germany: Spektrum Akademischer Verlag (book in German).
- Komarek J, Fott B (1983). Chlorococcales, 7. Teil. 1 Halfte (Das Phytoplankton des Süsswassers). Stuttgart, Germany: E. Schweizerbart’sche Verlagsbuchhandlung (book in German).
- Koponen S, Pulliainen J, Kallio K, Hallikainen, M (2002). Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sens Environ 79: 51–59.
- Krammer K, Lange-Bertalot H (1986). Bacillariophyceae 1. Teil: Naviculaceae (Süsswasserflora von Mitteleuropa). Stuttgart, Germany: Gustav Fischer (book in German).
- Krammer K, Lange-Bertalot H (1988). Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae (Süsswasserflora von Mitteleuropa). Stuttgart, Germany: Gustav Fischer (book in German).
- Lund JWG, Kipling C, Le Cren ED (1958). The inverted microscope method of estimating algal numbers and statistical basis for estimations by counting. Hydrobiologia 11: 143–465.
- Mischke U, Riedmüller U, Hoehn E, Schönfelder I, Nixdorf B (2008). Description of the German system for phytoplankton-based assessment of lakes for implementation of the EU Water Framework Directive (WFD). In: Mischke U, Nixdorf B, editors. Bewertung von Seen mittels Phytoplankton zur Umsetzung der EU-Wasserrahmenrichtlinie, BTUC-AR2/2008. Berlin, Germany: University of Cottbus, pp. 117–146.
- Naselli-Flores L, Padisak J, Dokulil M, Chorus I (2003). Equilibrium/ steady state concept in phytoplankton ecology. Hydrobiologia 502: 395–403.
- Nixdorf B, Mischke U, Rucker J (2003). Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes–an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia 502: 111–121.
- Obalı O (1984). Mogan Gölü fitoplanktonunun mevsimsel değişimi. Doga Bilim Dergisi 8: 1–14 (article in Turkish).
- OECD (1982). Eutrophication of Waters. Monitoring, Assessment and Control. Paris, France: OECD.
- Padisák J, Borics G, Feher G, Grigorszky I, Oldal I, Schmidt A, Zambone-Doma Z (2003). Dominant species and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.
- Padisák J, Crossetti LO, Naselli-Flores L (2009). Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 612: 1–19.
- Padisák J, Grigorszky I, Borics G, Soroczki-Pinter E (2006). Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directives: the assemblage index. Hydrobiologia 553: 1–14.
- Padisák J, Reynolds CS (1998). Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to cyanoprokaryotes. Hydrobiologia 384: 41–53.
- Pasztaleniec A, Poniewozik M (2010). Phytoplankton based assessment of the ecological status of four shallow lakes (Eastern Poland) according to Water Framework Directive - a comparison of approaches. Limnologica 40: 251–259.
- Popovski J, Pfiester LA (1990). Dinophyceae (Dinoflagellida), Band 6 (Süsswasserflora von Mitteleuropa). Jena, Germany: Gustav Fisher Verlag (book in German).
- Pulatsü S, Koksal G, Bakan Demir N (1998). Introduction to limnological survey in Mogan Lake, Central Anatolia, Turkey. In: Çelikkale S, Düzgüneş E, Okumuş I, editors. The Proceedings of First International Symposium on Fisheries and Ecology. Trabzon, Turkey, pp. 385–393.
- Pulatsü S, Topçu A, Kırkağaç M, Köksal G (2009). Sediment phosphorus characteristics in the clearwater state of Lake Mogan, Turkey. Lakes Reserv Res Manag 13: 197–205.
- Ramisch F, Dittrich M, Mattenberger C, Wehrli B, Wuest, A (1999). Calcite dissolution in two deep eutrophic lakes. Geochim Cosmochim Ac 63: 3349–3356.
- Reynolds CS, Huszar V, Kruk K, Naselli-Flores L, Melo S (2002). Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24: 417–428.
- Romo S, Villena MJ (2005). Phytoplankton strategies and diversity under different nutrient levels and planktivorous fish densities in a shallow Mediterranean Lake. J Plankton Res 27: 1273– 12
- Salmaso N, Decet F (1998). Interactions of physical, chemical and biological processes affecting the seasonality of mineral composition and nutrient cycling in the water column of a deep subalpine lake (Lake Garda, Northern Italy). Arch Hydrobiol 142: 385–414.
- Salmaso N, Morabito G, Buzzi F, Garibaldi L, Simona M, Mosello R (2006). Phytoplankton as an indicator of the water quality of the deep lakes south of the Alps. Hydrobiologia 563: 167–187.
- Salmaso N, Padisák J (2007). Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.
- Solak CN, Barinova S, Ács É, Dayıoğlu H (2012). Diversity and ecology of diatoms from Felent creek (Sakarya river basin), Turkey. Turk J Bot 36: 191–203.
- Sondergaard M, Jeppesen E, Jensen JP, Amsinck SL (2005) Water Framework Directive: ecological classification of Danish lakes. J Appl Ecol 42: 616–629.
- Soylu EN, Gönülol A (2010). Functional classification and composition of phytoplankton in Liman Lake. Turk J Fish Aquat Sc 10: 53–
- Strickland JDH, Parsons TR (1972). A Practical Handbook of Seawater Analysis. Vancouver, Canada: Fisheries Research Board of Canada.
- Sun J, Liu D (2003). Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25: 1331–1346. ter Braak CJF, Smilauer P (2002). CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Ithaca, NY, USA: Microcomputer Power.
- Utermöhl H (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung der theoretische und Angewandte Limnologie 5: 567–596 (article in German).
- WFD (2000). Directive 2000/60/ec of the European Parliament and of the Council 22.12.2000. Official Journal of the European Communities L327: 1–72.
- Yerli SV, Kıvrak E, Gürbüz H, Manav E, Mangıt F, Türkecan O (2012). Phytoplankton community, nutrients and chlorophyll a in Lake Mogan (Turkey); with comparison between current and old data. Turk J Fish Aquat Sc 12: 95–104.