Phytoplankton functional groups provide a quality assessment method by the Q assemblage index in Lake Mogan (Turkey)

The aim of this research is to test the Q phytoplankton assemblage index based on phytoplankton functional groups in Lake Mogan and to provide a quality state estimation by data from 2006. Phytoplankton was sampled at 2 stations of the lake, paralleled with physical (water temperature, Secchi depth, pH, conductivity) and chemical (DO, chlorophyll-a, alkalinity, total hardness, soluble reactive phosphorus, total phosphorus, NO2-N, NO3-N, NH3-N) analyses. The Q index was able to follow the main seasonal changes of the physical and chemical parameters and indicated a moderate ecological status for Lake Mogan. Phytoplankton biomass varied between 0.75 and 10.12 mg/L in the research period, and provided a similar ecological state by Q index, chlorophyll-a, total phosphorus, and Secchi depth. A total of 76 phytoplankton species were identified in the study period, belonging to 12 functional groups. The seasonal succession of dominant functional groups followed this sequence of coda: X2 (Chlamydomonas), Lo (Merismopedia, Peridinium, Chroococcus), F (Botryococcus, Sphaerocystis, Oocystis, Planktosphaeria), S1 (Phormidium, Planktothrix), M (Microcystis), and F (Botryococcus, Oocystis).

Phytoplankton functional groups provide a quality assessment method by the Q assemblage index in Lake Mogan (Turkey)

The aim of this research is to test the Q phytoplankton assemblage index based on phytoplankton functional groups in Lake Mogan and to provide a quality state estimation by data from 2006. Phytoplankton was sampled at 2 stations of the lake, paralleled with physical (water temperature, Secchi depth, pH, conductivity) and chemical (DO, chlorophyll-a, alkalinity, total hardness, soluble reactive phosphorus, total phosphorus, NO2-N, NO3-N, NH3-N) analyses. The Q index was able to follow the main seasonal changes of the physical and chemical parameters and indicated a moderate ecological status for Lake Mogan. Phytoplankton biomass varied between 0.75 and 10.12 mg/L in the research period, and provided a similar ecological state by Q index, chlorophyll-a, total phosphorus, and Secchi depth. A total of 76 phytoplankton species were identified in the study period, belonging to 12 functional groups. The seasonal succession of dominant functional groups followed this sequence of coda: X2 (Chlamydomonas), Lo (Merismopedia, Peridinium, Chroococcus), F (Botryococcus, Sphaerocystis, Oocystis, Planktosphaeria), S1 (Phormidium, Planktothrix), M (Microcystis), and F (Botryococcus, Oocystis).

___

  • Akbulut Emir N, Akbulut A (2002). The plankton composition of Lake Mogan in Central Anatolia. Zool Middle East 27: 107–
  • Albay M, Akçaalan R (2003). Factors influencing the phytoplankton steady state assemblages in a drinking water reservoir (Ömerli reservoir, Istanbul). Hydrobiologia 502: 85–95.
  • APHA (1995). Standard Methods for the Examination of Water and Wastewater. American Public Health Association. 19th ed. Washington, DC, USA: APHA.
  • Atay D, Bakan AN (1992). Mogan Gölünün ilk ürünü ve ilk ürüne göre balık ürününün tahmin edilmesi üzerine bir araştırma. Akdeniz Üniversitesi Su Ürünleri Muhendisliği Dergisi 3: 1–26 (article in Turkish).
  • Atici T, Obali O, Altindag A, Ahiska S, Aydin D (2010). The accumulation of heavy metals (Cd, Pb, Hg, Cr) and their state in phytoplanktonic algae and zooplanktonic organisms in Beysehir Lake and Mogan Lake, Turkey. Afr J Biotechnol 9: 475–487.
  • Aykulu G, Obalı O, Gönülol A (1983). Distribution of phytoplankton in some lakes around Ankara. Doğa Temel Bilimler 7: 277–287.
  • Borges PAF, Train S, Rodriguez LC (2008). Spatial and temporal variation of phytoplankton in two subtropical Brazilian reservoirs. Hydrobiologia 607: 63–74.
  • Boyd CE, Tucker CS (1998). Pond Aquaculture Water Quality Management. Norwell, MA, USA: Kluwer.
  • Burnak L, Beklioğlu M (2000). Macrophyte-dominated clearwater state of Lake Mogan. Turk J Zool 24: 305–313.
  • Çelik K, Ongun T (2008). Spatial and temporal dynamics of the steady-state phytoplankton assemblages in a temperate shallow hypertrophic lake (Lake Manyas, Turkey). Limnology 9: 115–123.
  • Çok İ, Ulutaş OK, Okuşluk Ö, Durmaz E, Demir N (2011). Evaluation of DNA damage in common carp (Cyprinus carpio L.) by comet assay for determination of possible pollution in Lake Mogan (Ankara). ScientificWorldJournal 11: 1455–1461.
  • Cox EJ (1996). Identification of Freshwater Diatoms from Live Material. London, UK: Chapman and Hall.
  • Crossetti LO, Bicudo CEM (2005). Structural and functional phytoplankton responses to nutrient impoverishment in mesocosms placed in a shallow eutrophic reservoir (Garcas Pond), Sao Paulo, Brazil. Hydrobiologia 541: 71–85.
  • Crossetti LO, Bicudo CEM (2008). Phytoplankton as a monitoring tool in a tropical urban shallow reservoir (Garcas Pond): the assemblage index application. Hydrobiologia 610: 161–173.
  • Devercelli M, O’Farrell I (2013). Factors affecting the structure and maintenance of phytoplankton functional groups in a nutrient rich lowland river. Limnologica 43: 67–78.
  • Fakıoğlu Ö, Pulatsü S (2005). Determination of external phosphorus loading in Mogan Lake (Ankara) following some restoration measures. YYU J Agr Sci 15: 63–69 (article in Turkish with English abstract).
  • Gecheva G, Yurukova L, Chesmedjiev S (2013). Patterns of aquatic macrophyte species composition and distribution in Bulgarian rivers. Turk J Bot 37: 99–110.
  • Guiry MD, Guiry GM (2013). AlgaeBase. Galway, Ireland: National University of Ireland. Available at http://www.algaebase.org (accessed 17 September 2013).
  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999). Biovolume calculation for pelagic and benthic microalgae. J Phycol 35: 403–424.
  • John DM, Whitton BA, Brook AJ (2002). The Freshwater Algal Flora of The British Isles. Cambridge, UK: Cambridge University.
  • Komarek J, Anagnostidis K (1999). Cyanoprokaryota 1. Teil: Chroococcales (Süsswasserflora von Mitteleuropa). Heidelberg, Germany: Spektrum Akademischer Verlag (book in German).
  • Komarek J, Fott B (1983). Chlorococcales, 7. Teil. 1 Halfte (Das Phytoplankton des Süsswassers). Stuttgart, Germany: E. Schweizerbart’sche Verlagsbuchhandlung (book in German).
  • Koponen S, Pulliainen J, Kallio K, Hallikainen, M (2002). Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sens Environ 79: 51–59.
  • Krammer K, Lange-Bertalot H (1986). Bacillariophyceae 1. Teil: Naviculaceae (Süsswasserflora von Mitteleuropa). Stuttgart, Germany: Gustav Fischer (book in German).
  • Krammer K, Lange-Bertalot H (1988). Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae (Süsswasserflora von Mitteleuropa). Stuttgart, Germany: Gustav Fischer (book in German).
  • Lund JWG, Kipling C, Le Cren ED (1958). The inverted microscope method of estimating algal numbers and statistical basis for estimations by counting. Hydrobiologia 11: 143–465.
  • Mischke U, Riedmüller U, Hoehn E, Schönfelder I, Nixdorf B (2008). Description of the German system for phytoplankton-based assessment of lakes for implementation of the EU Water Framework Directive (WFD). In: Mischke U, Nixdorf B, editors. Bewertung von Seen mittels Phytoplankton zur Umsetzung der EU-Wasserrahmenrichtlinie, BTUC-AR2/2008. Berlin, Germany: University of Cottbus, pp. 117–146.
  • Naselli-Flores L, Padisak J, Dokulil M, Chorus I (2003). Equilibrium/ steady state concept in phytoplankton ecology. Hydrobiologia 502: 395–403.
  • Nixdorf B, Mischke U, Rucker J (2003). Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes–an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia 502: 111–121.
  • Obalı O (1984). Mogan Gölü fitoplanktonunun mevsimsel değişimi. Doga Bilim Dergisi 8: 1–14 (article in Turkish).
  • OECD (1982). Eutrophication of Waters. Monitoring, Assessment and Control. Paris, France: OECD.
  • Padisák J, Borics G, Feher G, Grigorszky I, Oldal I, Schmidt A, Zambone-Doma Z (2003). Dominant species and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.
  • Padisák J, Crossetti LO, Naselli-Flores L (2009). Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 612: 1–19.
  • Padisák J, Grigorszky I, Borics G, Soroczki-Pinter E (2006). Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directives: the assemblage index. Hydrobiologia 553: 1–14.
  • Padisák J, Reynolds CS (1998). Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to cyanoprokaryotes. Hydrobiologia 384: 41–53.
  • Pasztaleniec A, Poniewozik M (2010). Phytoplankton based assessment of the ecological status of four shallow lakes (Eastern Poland) according to Water Framework Directive - a comparison of approaches. Limnologica 40: 251–259.
  • Popovski J, Pfiester LA (1990). Dinophyceae (Dinoflagellida), Band 6 (Süsswasserflora von Mitteleuropa). Jena, Germany: Gustav Fisher Verlag (book in German).
  • Pulatsü S, Koksal G, Bakan Demir N (1998). Introduction to limnological survey in Mogan Lake, Central Anatolia, Turkey. In: Çelikkale S, Düzgüneş E, Okumuş I, editors. The Proceedings of First International Symposium on Fisheries and Ecology. Trabzon, Turkey, pp. 385–393.
  • Pulatsü S, Topçu A, Kırkağaç M, Köksal G (2009). Sediment phosphorus characteristics in the clearwater state of Lake Mogan, Turkey. Lakes Reserv Res Manag 13: 197–205.
  • Ramisch F, Dittrich M, Mattenberger C, Wehrli B, Wuest, A (1999). Calcite dissolution in two deep eutrophic lakes. Geochim Cosmochim Ac 63: 3349–3356.
  • Reynolds CS, Huszar V, Kruk K, Naselli-Flores L, Melo S (2002). Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24: 417–428.
  • Romo S, Villena MJ (2005). Phytoplankton strategies and diversity under different nutrient levels and planktivorous fish densities in a shallow Mediterranean Lake. J Plankton Res 27: 1273– 12
  • Salmaso N, Decet F (1998). Interactions of physical, chemical and biological processes affecting the seasonality of mineral composition and nutrient cycling in the water column of a deep subalpine lake (Lake Garda, Northern Italy). Arch Hydrobiol 142: 385–414.
  • Salmaso N, Morabito G, Buzzi F, Garibaldi L, Simona M, Mosello R (2006). Phytoplankton as an indicator of the water quality of the deep lakes south of the Alps. Hydrobiologia 563: 167–187.
  • Salmaso N, Padisák J (2007). Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.
  • Solak CN, Barinova S, Ács É, Dayıoğlu H (2012). Diversity and ecology of diatoms from Felent creek (Sakarya river basin), Turkey. Turk J Bot 36: 191–203.
  • Sondergaard M, Jeppesen E, Jensen JP, Amsinck SL (2005) Water Framework Directive: ecological classification of Danish lakes. J Appl Ecol 42: 616–629.
  • Soylu EN, Gönülol A (2010). Functional classification and composition of phytoplankton in Liman Lake. Turk J Fish Aquat Sc 10: 53–
  • Strickland JDH, Parsons TR (1972). A Practical Handbook of Seawater Analysis. Vancouver, Canada: Fisheries Research Board of Canada.
  • Sun J, Liu D (2003). Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25: 1331–1346. ter Braak CJF, Smilauer P (2002). CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Ithaca, NY, USA: Microcomputer Power.
  • Utermöhl H (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung der theoretische und Angewandte Limnologie 5: 567–596 (article in German).
  • WFD (2000). Directive 2000/60/ec of the European Parliament and of the Council 22.12.2000. Official Journal of the European Communities L327: 1–72.
  • Yerli SV, Kıvrak E, Gürbüz H, Manav E, Mangıt F, Türkecan O (2012). Phytoplankton community, nutrients and chlorophyll a in Lake Mogan (Turkey); with comparison between current and old data. Turk J Fish Aquat Sc 12: 95–104.
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

The revision of the section Alopecuroidei of the genus Astragalus (Fabaceae) in Turkey

Hasan AKAN, Zeki AYTAÇ

Modulation of osmotic adjustment and enzymatic antioxidant profiling in Apera intermedia exposed to salt stress

Evren YILDIZTUGAY, Ceyda ÖZFİDAN KONAKÇI, Mustafa KÜÇÜKÖDÜK, Yağmur DURAN

Genome size and phylogenetic relationships between the Tunisian species of the genus Calligonum (Polygonaceae)

Hassen GOUJA, Alfredo GARCÍA-FERNÁNDEZ, Teresa GARNATJE, Aly RAIES, Mohamed NEFFATI

Tomato fruit quality as influenced by salinity and nitric oxide

Hala Ezzat Mohamed ALI, Ghada Saber Mohamed ISMAIL

Does gypsum influence seed germination?

Eva M. CAÑADAS, Miguel BALLESTEROS, Francisco VALLE, Juan LORITE

Expression of SOD gene and evaluating its role in stress tolerance in NaCl and PEG stressed Lycopersicum esculentum

Semra AYDIN, İlker BÜYÜK, Emine Sümer ARAS

Campanula alisan-kilincii (Campanulaceae), a new species from eastern Anatolia, Turkey

Hasan YILDIRIM, Serdar Gökhan ŞENOL

Low-copy nuclear gene and McGISH resolves polyploid history of Eleusine coracana and morphological character evolution in Eleusine

Qing LIU, Bin JIANG, Jun WEN, Paul Michael PETERSON

Morphology and genetic affinities of a novel Chattonella isolate (Raphidophyceae) isolated from Iran’s south coast (Oman Sea)

Gilan ATTARAN-FARIMAN, Christopher John Stanley BOLCH

Micropropagation of Erodium sibthorpianum subsp. sibthorpianum, an endemic threatened species of Uludağ Mountain (Bursa-Turkey)

Betül AKIN, İsmail KOCAÇALIŞKAN, Gürcan GÜLERYÜZ