Phenological variations of polyphenols in Smilax campestris (Smilacaceae)

Polyphenol profiles can suffer quali-quantitative modifications as the plant modifies its phenological condition. The objective of this work was to determine if there is a rhythm of production in the synthesis of polyphenols according to the phenological condition in the leaves, roots, and rhizomes of Smilax campestris Griseb. The plant material analysed corresponded to individuals of a colony of S. campestris collected in different phenological conditions. Standard methodology was used for the chromatographic profiles of flavonols (kaempferol, quercetin, isorhamnetin, and their glycosides) and proanthocyanidins (procyanidin and propelargonidin) and quantification of total phenol, condensed tannins, and flavonols. Appearance of metabolic changes was established in the studied organs of S. campestris according to the phenological condition.

Phenological variations of polyphenols in Smilax campestris (Smilacaceae)

Polyphenol profiles can suffer quali-quantitative modifications as the plant modifies its phenological condition. The objective of this work was to determine if there is a rhythm of production in the synthesis of polyphenols according to the phenological condition in the leaves, roots, and rhizomes of Smilax campestris Griseb. The plant material analysed corresponded to individuals of a colony of S. campestris collected in different phenological conditions. Standard methodology was used for the chromatographic profiles of flavonols (kaempferol, quercetin, isorhamnetin, and their glycosides) and proanthocyanidins (procyanidin and propelargonidin) and quantification of total phenol, condensed tannins, and flavonols. Appearance of metabolic changes was established in the studied organs of S. campestris according to the phenological condition.

___

  • Battista SM, Garcia G, Rugna A, Wagner M & Gurni A (2007). Actividad antimicótica en extractos de diferentes órganos de Smilax campestris Griseb. (Smilacaceae). Boletín Latinoamericano del Caribe de Plantas Medicinales y Aromáticas 6: 330–331.
  • Çirak C, Radišienė J, Ivanauskas L & Janulis V (2007). Variation of bioactive secondary metabolites in Hypericum origanifolium during its phenological cycle. Acta Physiologiae Plantarum 29: 197–203.
  • Çirak C, Radišienė J & Çamas N (2008). Pseudohypericin and hyperforin in two Turkish Hypericum species: Variation among plant parts and phenological stages. Biochemical Systematics and Ecology 36: 377–382.
  • Guaglianone R & Gattuso S (1991). Estudios taxonómicos sobre el género Smilax (Smilacaceae). Boletín de la Sociedad Argentina de Botánica 27: 105–129.
  • Haslam E (1988). Plant polyphenols (syn. Vegetable tannins) and chemical defense. A reappraisal. Journal of Chemical Ecology 14: 1789–1805.
  • Haslam E (1989). Plant polyphenols: Vegetable Tannins Revisited. Cambridge: Cambridge University Press.
  • Mabry T, Markham K & Thomas M (1970). The Systematic Identification of the Flavonoids. Berlin and New York: SpringerVerlag.
  • Makkar HPS, Blümmel M, Borowy NK & Becker K (1993). Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. Journal of the Science Food and Agriculture 61: 161–165.
  • Mandrile E & Bongiorno de Pfirter G (1991). Zarzaparrilla. Smilax campestris Grisebach (Smilacaceae). Biofase 6: no number.
  • Markham K (1982). Techniques of Flavonoid Identification. New York: Academic Press.
  • Middleton E Jr & Kandaswami C (1994). The impact of plant flavonoids on mammalian biology: implications for immunity, inflammation and cancer. In Harborne JB (ed.) The Flavonoids. Advances in Research since 1986, pp. 619–652. Boca Raton, Florida: Chapman & Hall/CRC.
  • Nikolova M & Veličković D (2007). Phenological variations in the surface flavonoids of Artemisia vulgaris L. and Artemisia absinthium L. Turkish Journal of Botany 31: 459–462.
  • Porter LJ, Hrstich LN & Chan BG (1986). The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25: 223–230.
  • Rezanejad F (2012). Air pollution effects on flavonoids in pollen grains of some ornamental plants. Turkish Journal of Botany 36: 49–54.
  • Rugna A, Gurni A & Wagner M (1999). Progress in studies on flavonols from Smilax campestris Griseb. (Smilacaceae). Acta Horticulturae 501: 191–194.
  • Rugna A, Gurni, A & Wagner M (2002). Estudio variacional de flavonoides en ejemplares masculinos y femeninos de Smilax campestris Griseb. (Smilacaceae). Acta Farmacéutica Bonaerense 21: 119–21.
  • Rugna A, Polo J, Evelson P, Gurni A, Llesuy S & Wagner M (2003).
  • Antioxidant activity in rhizomes from Smilax campestris Griseb. (Smilacaceae). Molecular Medicinal Chemistry 1: 21– Rugna A, Gurni A & Wagner M (2005). Fitoquímica comparativa de flavonoides en los diferentes órganos de Smilax campestris
  • Griseb. (Smilacaceae). Dominguezia 21: 17–23. Rugna A (2006). Caracterización de los flavonoides en diferentes poblaciones de Smilax campestris y su relación fitoquímica con otras especies del género que crecen en la Argentina. Tesis doctoral, Universidad de Buenos Aires, Argentina.
  • Rugna A, Ricco R, Gurni A & Wagner M (2007). Efectos de la radiación solar sobre la producción de polifenoles en ejemplares femeninos de Smilax campestris Griseb. (Smilacaceae). Latin American Journal of Pharmacy 26: 420–423.
  • Rugna A, Ricco R, Gurni A & Wagner M (2008). Variaciones en el contenido de los polifenoles foliares en Smilax campestris Griseb. (Smilacaceae) segşn su grado de desarrollo. Latin
  • American Journal of Pharmacy 27: 247–9. Rugna A, Eusebi M, Castelnuovo L, Mazzeo M, Gurni A & Wagner M (2009) Efectos de la temperatura en la producción de polifenoles en diferentes ejemplares de Smilax campestris
  • Griseb. (Smilacaceae). I Congreso Internacional de Farmacobotánica. Chillán, Chile. Rugna A, Ricco R, Gurni A & Wagner M (2011). Variaciones cualicuantitativas en la producción de polifenoles en hojas de Smilax campestris Griseb. (Smilacaceae) sanas y atacadas por la oruga de la mariposa Agraulis vanillae L. (Heliconidae). Dominguezia 27: 27–33.
  • Toker Z (2009). Variation of total hypericin, phenolic and flavonoid compounds in Hypericum triquetrifolium during its phenological cycle. Pharmaceutical Biology 47: 285–288.
  • Waterman P & Mole S (1994). Analysis of Phenolic Plant Metabolites. Oxford: Blackwell.
  • Yanagida A, Kanda T, Shoji T, Ohnishi-Kameyama M & Nagata T (1999). Fractionation of apple procyanidins by size-exclusion chromatography. Journal of Chromatography A 855: 181–190.