Investigating the anatomy of the halophyte Salsola crassa and the impact of industrial wastewater on its vegetative and generative structures

Investigating the anatomy of the halophyte Salsola crassa and the impact of industrial wastewater on its vegetative and generative structures

Salsola crassa M.B. is one of the most successful plants used against industrial pollutants. In this study, we selected youngSalsola crassa M.B. plants from their natural habitats. Some plants were irrigated with industrial wastewater containing Fe, Co, Ni, Cu,Pb, and Zn, and others were irrigated with tap water for 3–4 months. Afterwards, the shoots and roots were randomly cut, separated,fixed, dyed, and observed using light microscopy. Structural changes were analyzed by stereology. There were some differences inappearance and structure between the treated and control samples. For example, the number of leaves and flowers and the size ofseeds and flowers in the treated plants were reduced. The diameter of the cortical parenchyma, the total area of each vascular bundle,surface area of the pith cells in the stem, leaf cuticle thickness, mechanical layer thickness of the anther, and diameter of pollen grainswere reduced. A peculiar palisade chlorenchyma beneath the epidermis and unexpected small vascular bundles on the upper part ofthe cortex were features of both groups. Finally, we concluded that industrial waste water pollutants affected various aspects of plantdevelopment.

___

  • Abdelbar OH (2018). Flower vascularization and fruit developmental anatomy of quinoa (Chenpodium quinoa Willd) Amaranthaceae. Annals of Agricultural Sciences 63 (1): 67-75. doi: 10.1016/j. aoas.2018.05.002
  • Akhani H, Edwards G, Roalson E (2007). Diversification of the old world Salsoleae s.l. (Chenopodiaceae): molecular phylogenetic analysis of nuclear and chloroplast data sets and revised classification. International Journal of Plant Sciences 168 (6): 931-956. doi: 10.1086/518263
  • Batool R, Hameed M, Ashraf M, Ahmad MS, Fatima S (2015). PhysioAnatomical Responses of Plants to Heavy Metals. In: Öztürk M, Ashraf M, Aksoy A, Ahmad M (editors). Phytoremediation for Green Energy. Dordrecht, the Netherlands: Springer, pp. 79-96.
  • Bercu R, Bavaru E (2004). Anatomical aspects of Salsola kali subsp. Ruthenica (Chenopodiaceae). Phytologia Balcanica 10 (2-3): 227-232.
  • Devi S, Nandwal AS, Angrish R, Arya SS, Kumar N et al. (2016). Phytoremediation potential of some halophytic species for soil salinity. International Journal of Phytoremediation 18 (7): 693- 696. doi: 10.1080/15226514.2015.1131229
  • Dickie CW, Gerlach ML, Hamar DW (1989). Kochia scoparia oxalate content. Veterinary and Human Toxicology 31(3): 240-241.
  • Farzi A, Borghei SM, Vossoughi M (2017). The use of halophytic plants for salt phytoremediation in constructed wetlands. International Journal of Phytoremediation 19 (7): 643-650. doi: 10.1080/15226514.2016.1278423
  • Forbes AC, Allred KW (1999). An investigation of Salsola L. (Chenopodiaceae) in New Mexico. New Mexico Botanist 12: 2-9.
  • Gratão PL, Monteiro CC, Rossi ML, Martinelli AP, Peres LEP et al. (2009). Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium. Environmental and Experimental Botany 67 (2): 387-394. doi: 10.1016/j.envexpbot.2009.06.017
  • Grigore MN, Toma C (2007). Histo-anatomical strategies of Chenopodiaceae halophytes: adaptive, ecological and evolutionary implications. Waste Transactions on Biology and Biomedicine 4 (12): 204-218.
  • Hagemeyer J, Waisel Y (1988). Excretion of ions (Cd2+, Li+, Na+ and Cl−) by Tamarix aphylla. Physiologia Plantarum 73: 541-546. doi: 10.1111/j.1399-3054.1988.tb05438.x
  • Hameed M, Ashraf M, Ahmad MSA, Naz N (2010). Structural and Functional Adaptations in Plants for Salinity Tolerance. In: Ashraf M, Ozturk M, Ahmad M (editors). Plant Adaptation and Phytoremediation. Dordrecht, the Netherlands: Springer, pp. 151-171.
  • Idzikowska K (2005). Morphological and anatomical structure of generative organs of Salsola kali spp. Ruthenica (Iljin) Soo at the SEM level. Acta Sicietanicorum Poloniae 74 (2): 99-109. doi: 10.5586/asbp.2005.014
  • Kadukova J, Manousaki E, Kalogerakis N (2008). Pb and Cd accumulation and phyto-excretion by salt cedar (Tamarix smyrnensis Bunge). International Journal of Phytoremediation 10: 31-46. doi: 10.1080/15226510701827051
  • Karakas S, Çullu MA, Dikilitas M (2017). Comparison of two halophyte species (Salsola soda and Portulaca oleracea) for salt removal potential under different soil salinity conditions. Turkish Journal of Agriculture and Forestry 41: 183-190. doi: 10.3906/tar-1611-82
  • Kouhi SMM, Lahouti M, Ganjeali A, Entezari MH (2016). Anatomical and ultrastructural responses of Brassica napus after long-term exposure to excess zinc. Turkish Journal of Biology 40: 652- 660. doi: 10.3906/biy-1411-13
  • Lefevre I, Marchal G, Meerts P, Corréal E, Lutts S (2009). Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environmental and Experimental Botany 65: 142-152. doi: 10.1016/j. envexpbot.2008.07.005
  • Luttge U (1971). Structure and function of plant glands. Annual Review of Plant Physiology 22: 23-44. doi: 10.1146/annurev. pp.22.060171.000323
  • Macnair MR (2003). The hyperaccumulation of metals by plants. Advances in Botanical Research 40: 63-105. doi: 10.1016/ S0065-2296(05)40002-6
  • Manousaki E, Kalogerakis N (2011). Halophytes—an emerging trend in phytoremediation. International Journal of Phytoremediation 13 (10): 959-969. doi: 10.1080/15226514.2010.532241
  • Mosyakin SL (2017). The first record of Salsola paulsenii (Chenopodiaceae) in Ukraine, with taxonomic and nomenclatural comments on related taxa. Ukrainian Botanical Journal 74 (5): 409-420. doi: 10.15407/ukrbotj74.05.409
  • Mohammadi Jahromi NS, Jonoubi P, Majd A, Dehghani M (2019). Root structural changes of two remediator plants as the first defective barrier against industrial pollution, and their hyperaccumulation ability. Environmental Monitoring and Assessment 191 (3): 148. doi: 10.1007/s10661-019-7240-7
  • Nakata PA (2012). Plant calcium oxalate crystal formation, function, and its impact on human health. Frontiers in Biology 7: 254- 266. doi: 10.1007/s11515-012-1224-0
  • Nedjimi B, Daoud Y (2009). Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora. 204: 316-324. doi: 10.1016/j.flora.2008.03.004
  • Poschenrieder C, Gunse B, Barcelo J (1989). Influence of cadmium on water relations, stomatal resistance, and abscisic-acid content in expanding bean leaves. Plant Physiology 90: 1365- 1371. doi: 10.1104/pp.90.4.1365
  • Prasad MNV, Strzałka K (1999). Impact of Heavy Metals on Photosynthesis. In: Prasad MNV, Hagemeyer J (editors). Heavy Metal Stress in Plants. Berlin, Heidelberg, Germany: Springer, pp. 117-138. doi: 10.1007/978-3-662-07745-0_6
  • Przymusinski R, Rucinska R, Gwozdz EA (2004). Increased accumulation of pathogenesis-related proteins in response of lupine roots to various abiotic stresses. Environmental and Experimental Botany 52: 53-61. doi: 10.1016/j. envexpbot.2004.01.006
  • Ruzin SE (1999). Plant Microtechnique and Microscopy. Oxford, UK: Oxford University Press.
  • Shah FUR, Ahmad N, Masood KhR, Peralta-Videa JR, Ahmad FD (2010). Heavy Metal Toxicity in Plants. In: Ashraf M, Ozturk M, Ahmad MSA (editors). Plant Adaptation and Phytoremediation. Heidelberg, Germany: Springer, pp. 71-97. doi: 10.1007/978-90-481-9370-7_4
  • Siener R, Honow R, Seidler A, Voss S, Hesse A (2006). Oxalate contents of species of the Polygonaceae, Amaranthaceae and Chenopodiaceae families. Food Chemistry 98 (2): 220-224. doi: 10.1016/j.foodchem.2005.05.059
  • Suaire R, Durickovic I, Framont-Terrasse L, Leblain JY, De Rouck AC et al. (2016). Phytoextraction of Na+ and Cl− by Atriplex halimus L. and Atriplex hortensis L.: a promising solution for remediation of road run off contaminated with deicing salts. Ecological Engineering 94: 182-189. doi: 10.1016/j. ecoleng.2016.05.055
  • Swart P, Swart AC, Louw A, Van der Merw KJ (2003). Biological activities of the shrub Salsola tuberculatiformis Botsch.: contraceptive or stress alleviator? Bioessays 25 (6): 612-619. doi: 10.1002/bies.10285
  • Toderich KN, Shuyskaya EV, Khujanazarov TM, Ismail Sh, Kawabata Y (2010). The structural and functional characteristics of Asiatic desert halophytes for phytostabilization of polluted Sites. In: Ashraf M, Ozturk M, Ahmad MSA (editors). Plant Adaptation and Phytoremediation. Dordrecht, the Netherlands: Springer, pp. 245-274.
  • Tooulakou G, Giannopoulos A, Nikolopoulos D, Bresta P, Dotsika E et al. (2016). Alarm photosynthesis: calcium oxalate crystals as an internal CO2 source in plants. Plant Physiology 171: 2577- 2585. doi: 10.1104/pp.16.00111
  • Webb JM, Quintã R, Papadimitriou S, Norman L, Rigby M et al. (2012). Halophyte filter beds for treatment of saline wastewater from aquaculture. Water Research 15 (46): 5102-5114. doi: 10.1016/j.watres.2012.06.034
  • Yousefi N, Chehregani A, Malayeri B, Lorestani B, Cheraghi M (2010). Investigating the effect of heavy metals on developmental stages of anther and pollen in Chenopodium botrys L. (Chenopodiaceae). Biological Trace Element Research 140 (3): 368-376. doi: 10.1007/s12011-010-8701-6