Defensive manoeuvres of NHX1 and SOS1 co/overexpression in plant salt tolerance

Defensive manoeuvres of NHX1 and SOS1 co/overexpression in plant salt tolerance

Excessive accumulation of salts is one of the most important factors affecting the production quality of plants. The difficultyto develop salt stress tolerant crops has prevented the security of the global food system. The classical crop breeding approach thatuses random mutagenesis/recombination is time-consuming in the face of an ever-increasing human population and extreme weatherpattern shifts. Today, technologies introducing foreign genetic material into plants have the best potential to assist in crop breedingimprovement due to its high efficiency, accuracy, low risk of off-target effects, and minimal labour compared to classical methods. Thenotion of $Na^+$ /$H^+$ antiporters in this technology has increased rapidly in recent years with numerous successful examples. In the awe ofrapidly developing modern techniques, which do not yet exist at the required scale to face the aforementioned challenges, the currentknowledge of the co/overexpressing $Na^+$ /$H^+$ antiporters (NHX1 and SOS1) will be explored as a potential method to produce staplecrops with greater resilience to over concentrated ions and abnormally high osmotic stress.

___

  • Adem GD, Roy SJ, Plett DC, Zhou M, Bowman PJ et al. (2015). Expressing AtNHX1 in barley (Hordium vulgare L.) does not improve plant performance under saline conditions. Plant Growth Regulation 77: 289-297. doi: 10.1007/s10725-015- 0063-9
  • Amin USM, Biswas S, Elias SM, Razzaque S, Haque T et al. (2016). Enhanced salt tolerance conferred by the complete 2.3 kb cDNA of the rice vacuolar Na+/H+ antiporter gene compared to 1.9 kb coding region with 5′ UTR in transgenic lines of rice. Frontiers in Plant Science 7: 14. doi: 10.3389/fpls.2016.00014
  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999). Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285 (5431): 1256-1258. doi: 10.1126/science.285.5431.1256
  • Ashraf M (2010). Inducing drought tolerance in plants: Recent Advances. Biotechnology Advances 28 (1): 169-183. doi: 10.1016/j.biotechadv.2009.11.005
  • Asif MA, Zafar Y, Iqbal J, Iqbal MM, Rashid U et al. (2011). Enhanced expression of AtNHX1, in transgenic groundnut (Arachis hypogaea L.) improves salt and drought tolerence, Molecular Biotechnology 49 (3): 250-256. doi: 10.1007/s12033-011-9399- 1
  • Biradar H, Karan R, Subudhi PK (2018). Transgene pyramiding of salt responsive protein 3-1 (SaSRP3-1) and SaVHAc1 from Spartina alterniflora L. enhances salt tolerance in rice. Frontiers in Plant Science 9 (1304). doi: 10.3389/fpls.2018.01304.
  • Capell T, Christou P (2004). Progress in plant metabolic engineering. Current Opinion in Biotechnology 15 (2): 148-154. doi: 10.1016/j.copbio.2004.01.009
  • Charfeddine S, Charfeddine M, Hanana M Gargouri-Bouzid R (2019). Ectopic expression of a grape vine vacuolar NHX antiporter enhances transgenic potato plant tolerance to salinity. Journal of Plant Biochemistry and Biotechnology 28 (1): 50-62. doi: 10.1007/s13562-018-0462x
  • Cheeseman JM (2015). The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. New Phytologist 206 (2): 557-570. doi: 10.1111/ nph.13217
  • Chen H, An R, Tang JH, Cui XH, Hao FS et al. (2007). Overexpression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice. Molecular Breeding 19: 215-225. doi: 10.1007/s11032-006-9048-8
  • Chen LH, Zhang B, Xu ZQ (2008). Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Research 17: 121-132. doi: 10.1007/s11248-007- 9085-z
  • Chen X, Lu X, Shu N, Wang D, Wang S et al. (2017). GhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana. PLoS ONE 12 (7): e0181450. doi: 10.1007/s11032-006-9048-8
  • Cuartero J, Bolarin M, Moreno V (2009). Molecular tools for enhancing salinity tolerance in plants. In: Jain SM, Brar DS (editors). Molecular techniques in crop improvement. Netherlands: Springer, pp. 373-405.
  • FAO (2009). Looking Ahead in World Food and Agriculture: Perspectives to 2050. Jelle Bruinsma, ESA. Rome, Italy: FAO.
  • Feki K, Quintero FJ, Khoudi H, Leidi EO, Masmoudi K et al. (2014). A constitutively active form of a durum wheat Na+/ H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. Plant Cell Reports 33: 277-288. doi: 10.1007/ s00299-013-1528-9
  • Feki K, Tounsi S, Masmoudi K, Brini F (2017). The durum wheat plasma membrane Na+/H+ antiporter SOS1 is involved in oxidative stress response. Protoplasma 254: 1725-1734. doi: 10.1007/s00709-016-1066-8
  • Fischer RA, Connor DJ (2018). Issues for cropping and agricultural science in the next 20 years. Field Crops Research 222: 121-14. doi: 10.1016/j.fcr.2018.03.008
  • Flowers TJ, Muscolo A (2015). Introduction to the special issue: Halophytes in a changing world. AoB Plants 10 (7): doi: 10.1093/aobpla/plv020
  • Flowers T, Yeo A (1995). Breeding for salinity resistance in crop plants: Where next?. Functional Plant Biology 22 (6): 875-884. doi: 10.1071/PP9950875
  • Flowers TJ, Munns R, Colmer TD (2014). Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany 115 (3): 419-31. doi: 10.1093/aob/mcu217
  • Fraile-Escanciano A, Kamisugi Y, Cuming AC, Rodríguez-Navarro A, Benito B (2010). The SOS1 transporter of Physcomitrella patens mediates sodium efflux in planta. New Phytologist 188 (3): 750-761. doi: 10.1111/j.1469-8137.2010.03405.x.
  • Feki K, Quintero FJ, Pardo JM, Masmoudi K (2011). Regulation of durum wheat Na+/H+ exchanger TdSOS1 by phosphorylation. Plant Molecular Biology 76: 545-556. doi: 10.1007/s11103-011- 9787-8
  • Gaxiola RA, Palmgren MG, Schumacher K (2007). Plant proton pumps. FEBS Letters 581: 2204. doi: 10.1016/j. febslet.2007.03.050
  • Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL et al. (1999). The Arabidopsis thaliana proton transporters, AtNHX1 and AVP1, can function in cation detoxification in yeast. Proceedings of the National Academy of Sciences USA 96 (4): 1480-1485. doi: 10.1073/pnas.96.4.1480
  • Glenn EP, Brown JJ, Blumwald E (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Science 18 (2): 227-255. doi: 10.1080/07352689991309207
  • Guo KM, Babourinaa O, Rengela Z (2009). Na+/H+ antiporter activity of the SOS1 gene: lifetime imaging analysis and electrophysiological studies on Arabidopsis seedlings. Physiologia Plantarum 137: 155-165 doi: 10.1111/j.1399- 3054.2009.01274.x
  • Hamaji K, Nagira M, Yoshida K, Ohnishi M, Oda Y et al. (2009). Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis. Plant Cell Physiology 50: 2023-2033. doi: 10.1093/pcp/pcp143
  • Hamam AM, Britto DT, Flam-Shepherd R, Kronzucker HJ (2016). Measurement of differential Na+ efflux from apical and bulk root zones of intact barley and Arabidopsis plants. Frontiers in Plant Science 7: 272. doi: 10.3389/fpls.2016.00272
  • He C, Yan J, Shen G, Fu L, Holaday AS et al. (2005). Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiology 46 (11): 1848-1854. doi: 10.1093/pcp/pci201
  • Huang Y, Guan C, Liu Y, Chen B, Yuan S et al. (2017). Enhanced growth performance and salinity tolerance in transgenic switchgrass via overexpressing vacuolar Na+ (K+)/H+ antiporter gene (PvNHX1). Frontiers in Plant Science 8: 458. doi: 10.3389/ fpls.2017.00458
  • Ismail A, Seo M, Takebayashi Y, Kamiya Y, Eiche E et al. (2014). Salt adaptation requires efficient fine-tuning of jasmonate signalling. Protoplasma 251 (4): 881-898. doi: 10.1007/s00709- 013-0591-y
  • James D, Borphukan B, Fartyal D, Ram B, Singh J et al. (2018). Concurrent overexpression of OsGS1;1 and OsGS2 genes in transgenic rice (Oryza sativa L.): Impact on tolerance to abiotic stresses. Frontiers in Plant Science 9: 786. doi: 10.3389/ fpls.2018.00786
  • Jha B, Mishra A, Jha A, Joshi M (2013). Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS ONE 8: e71136. doi: 10.1371/annotation/89bc2c6f-2799-4a5b-9f57-8e2fa3e14fc9
  • Ji H, Pardo JM, Batelli G et al. (2013) The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Molecular Plants 6: 275-286 doi: 10.1093/mp/sst017
  • Jia Q, Zheng C, Sun S, Amjad H, Liang K (2018). The role of plant cation/proton antiporter gene family in salt tolerance. Biolagiae Plantarum 62 (4): 617-629 doi: 10.1007/s10535-018-0801-8
  • Kang P, Bao AK, Kumar T, Pan YQ, Bao Z et al. (2016). Assessment of stress tolerance, productivity, and forage quality in T-1 transgenic alfalfa co-overexpressing ZxNHX and ZxVP1-1 from Zygophyllum xanthoxylum. Frontiers in Plant Science 7: 1598. doi: 10.3389/fpls.2016.01598
  • Kant S, Kant P, Raveh E, Barak S (2006). Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophile. Plant Cell &Environment 29 (7): 1220-1234 doi: 10.1111/j.1365-3040.2006.01502.x
  • Kumar S, Kalita A, Srivastava R, Sahoo L (2017). Co-expression of Arabidopsis NHX1 and bar improves the tolerance to salinity, oxidative stress, and herbicide in transgenic mungbean. Frontiers in Plant Science 8: 1896. doi: 10.3389/fpls.2017.01896
  • Leidi EO, Barragan V, Rubio L, El‐Hamdaoui A, Teresa Ruiz M (2010). The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. The Plant Journal 61 (3): 495- 506. doi: 10.1111/j.1365-313X.2009.04073.x.
  • Li Sun, Pehlivan N, Esmaeili N, Jiang W, Yang X et al. (2018). Cooverexpression of AVP1 and PP2A-C5 in Arabidopsis makes plants tolerant to multiple abiotic stresses. Plant Science 274: 271-283. doi: 10.1016/j.plantsci.2018.05.026
  • Li TY, Zhang Y, Liu H, Wu YT, Li WB et al. (2010). Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and salt tolerance in transgenic soybean for over six generations. Chinese Science Bulletin 55: 1127-1134 doi: 10.1007/s11434- 010-0092-8
  • Ma DM, W Xu WR, Li HW, Jin FX, Guo LN et al. (2013). Coexpression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca arundinacea Schreb.) Protoplasma 251 (1): 219-31 doi: 10.1007/s00709-013-0540-9
  • Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK et al. (2007). Conservation of the salt overly sensitive pathway in rice. Plant Physiology 143 (2): 1001-1012. doi: doi.org/10.1104/ pp.106.092635
  • Mishra S, Behura R, Awasthi JP, Dey M, Sahoo D (2014). Ectopic overexpression of a mungbean vacuolar Na+/H+ antiporter gene (VrNHX1) leads to increased salinity stress tolerance in transgenic Vigna unguiculata L. Walp. Molecular Breeding 34: 1345-1359 doi: 10.1007/s11032-014-0120-5
  • Mishra S, Alavilli H, Lee BH. (2015). Cloning and characterization of a novel vacuolar Na+/H+ antiporter gene (VuNHX1) from drought hardy legume, cowpea for salt tolerance. Plant Cell, Tissue and Organ Culture 120: 19-33 doi: 10.1007/s11240-014- 0572-7
  • Mittler R, Blumwald E (2010). Genetic engineering for modern agriculture: challenges and perspectives. Annual Review of Plant Biology 61: 443-462. doi: 10.1146/annurevarplant-042809-112116
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651-681. doi: 10.1146/annurev. arplant.59.032607.092911
  • Naqvi S, Farre G, Sanahuja G, Capell T, Zhu C et al. (2010). When more is better: Multigene engineering in plants. Trends in Plant Science 15 (1): 48-56. doi: 10.1016/j.tplants.2009.09.010
  • Nguyen TX, Nguyen T, Alameldin H, Goheen B, Loescher W et al. (2013). Transgene Pyramiding of the HVA1 and mtlD in T3 Maize (Zea mays L.) Plants confers drought and salt tolerance, along with an increase in crop biomass. International Journal of Agronomy 598163. doi: 10.1155/2013/598163.
  • Nie WX, Xu L, Yu BJ (2015). A putative soybean GmsSOS1 confers enhanced salt tolerance to transgenic Arabidopsis sos1-1 mutant. Protoplasma 252: 127-134. doi: 10.1007/s00709-014- 0663-7
  • Niu X, Bressan RA, Hasegawa PM (1995). Ion homeostasis in NaCl stress environments. Plant Physiology 109 (3): 735-742 doi: 10.pmc/articles/PMC161372/
  • Oh D, Leidi H, Zhang E, Hwang SM, Li Y et al. (2009). Loss of halophytism by interference with SOS1 expression. Plant Physiology 151 (1): 210-222 doi: 10.1104/pp.109.137802
  • Okazaki K, Wöhlert D, Warnau J, Jung H, Yildiz O et al. (2019). Mechanism of the electroneutral sodium/proton antiporter PaNhaP from transition-path shooting. Nature Communications 10: 1742 doi: 10.1038/s41467-019-09739-0.
  • Olias R, Eljakaoui Z, Li J, De Morales PA, Marín-Manzano MC et al. (2009). The Plasma Membrane Na+/H+ Antiporter Sos1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell & Environment 32 (7): 904-916. doi: 10.1111/j.1365-3040.2009.01971.x
  • Panta S, Flowers T, Lane P, Doyle G, Haros R et al. (2014). Halophyte Agriculture: Success Stories. Environmental and Experimental Botany 107: 71-83. doi: 10.1016/j.envexpbot.2014.05.006
  • Pandey S, Patel MK, Mishra A, Jha B (2016). In planta transformed cumin (Cuminum cyminum L.) plants, overexpressing the SbNHX1 gene showed enhanced salt endurance. PLoS ONE 11: e0159349. doi: 10.1371/journal.pone.0159349
  • Patel MK, Joshi M, Mishra A, Jha B. (2015). Ectopic expression of SbNHX1 gene in transgenic castor (Ricinus communis L.) enhances salt stress by modulating physiological process. Plant Cell, Tissue and Organ Culture 122: 477- 490. doi: 10.1007/ s11240-015-0785-4
  • Pehlivan N, Sun L, Jarrett P, Yang X, Mishra N et al. (2016). Cooverexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants. Plant and Cell Physiology 57 (5): 1069-1084 doi: 10.1093/pcp/pcw055
  • Qiu QS, Guo Y, Quintero FJ, Pardo JM, Schumaker KS et al. (2004). Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. Journal of Biological Chemistry 279 (1): 207-215. doi: 10.1074/jbc.M307982200
  • Qiao W, Zhao H, Li XY (2007). Overexpression of AeNHX1, a rootspecific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants. Plant Cell Reports 26 (9): 1663-1672 doi: 10.1007/s00299-007-0354-3
  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences USA 99 (12): 8436-8441 doi: 10.1073/pnas.122224699
  • Quan R, Wang J, Yang D, Zhang H, Zhang Z et al. (2017). EIN3 and SOS2 synergistically modulate plant salt tolerance. Scientific Reports 16 (7): 44637. doi: 10.1038/srep44637.
  • Raghavendrarao S, Anil K, Moolab RK (2017). A review on advanced methods in plant gene targeting. Journal of Genetic Engineering and Biotechnology 15 (2): 317-321. doi: 10.1016/j. jgeb.2017.07.004
  • Rajagopal D, Agarwal P, Tyagi W, Singla-Pareek SL, Reddy MK et al. (2007) Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Molecular Breeding 19: 137-151. doi: 10.1007/s11032-006-9052-z
  • Rukavtsova EB, Lebedeva AA, Zakharchenko NS (2013). The ways to produce biologically safe marker-free transgenic plants. Russian Journal of Plant Physiology 60 (1): 14-26 doi: 10.1134/ S1021443712060131
  • Shen G, Jia W, Xiaoyun Q (2015). Co-overexpression of AVP1 and AtNHX1 in cotton further improves drought and salt tolerance in transgenic cotton plants. Plant Molecular Biology Reporter 33: 167-177 doi: 10.1007/s11105-014-0739-8
  • Sahoo DP, Kumar S, Mishra S (2016). Enhanced salinity tolerance in transgenic mungbean overexpressing Arabidopsis antiporter (NHX1) gene. Molecular Breeding 36: 144. doi: doi: 10.1007/ s11032-016-0564-x
  • Schmidt MA, LaFayette PR, Artelt BA, Parrott WA (2008). A comparison of strategies for transformation with multiple genes via microprojectile-mediated bombardment. In Vitro Cellular & Developmental Biology – Plant 44 (3): 162-168. doi: 10.1007/s11627-007-9099-5
  • Shi H, Ishitani M, Kim C, Zhu JK (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences USA 97 (12): 6896-6901. doi: 10.1073/pnas.120170197
  • Shi H, Lee B, Wu SJ, Zhu JK (2003). Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology 21: 81-85. doi: 10.1038/nbt766
  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002). The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14: 465-477 doi: 10.1105/ tpc.010371
  • Ohta M, Guo Y, Halfter U (2003). A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proceedings of the National Academy of Sciences USA 100: 11771-11776 doi: 10.1073/pnas.2034853100
  • Wang J, Zuo K, Wu W, Song J, Sun X et al. (2004) Expression of a novel antiporter gene from Brassica napus resulted in enhanced salt tolerance in transgenic tobacco plants. Biologia Plantarum 48 (4): 509-515. doi: 10.1023/B:BIOP.0000047145.18014.a3
  • Wang D, Luo W, Khurshid M, Gao L, Sun Z et al. (2018) Coexpression of PeDREB2a and KcERF improves drought and salt tolerance in transgenic Lotus corniculatus. Journal of Plant Growth Regulation 37 (2): 550-559. doi: 10.1007/s00344-017- 9753-z
  • Wang Z, Yang C, Chen H, Wang P, Song C et al. (2018). Multigene co-expression can improve comprehensive resistance to multiple abiotic stresses in Brassica napus L. Plant Science 274: 410-419. doi: 10.1016/j.plantsci.2018.06.014.
  • Waditee R, Tanaka Y, Takabe T (2006). Na+/H+ antiporters in plants and cyanobacteria. In: Rai A, Takabe T (editors). Abiotic Stress Tolerance in Plants. Netherlands: Springer, pp. 163-175.
  • Wu SJ, Ding L, Zhu JK (1996). SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8: 617- 627 doi: 10.1105/tpc.8.4.617
  • Xiaowei Li, Fawei W, Daqian S, Sun D, Wang N et al. (2018). Cloning and characterization of SucNHX1, a novel vacuolar Na+/H+ antiporter from the halophyte Suaeda corniculata that enhances the saline-alkali tolerance in Arabidopsis by its overexpression. Plant Cell Tissue and Organ Culture 134: 6804 doi: 10.1007/ s11240-018-1430-9
  • Xu H, Jiang X, Zhan K, Cheng X, Chen X et al. (2008). Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Archives of Biochemistry and Biophysics 473 (1): 8-15. doi: 10.1016/j.abb.2008.02.018
  • Xu K, Hong P, Luo LJ (2009). Overexpression of AtNHX1, a vacuolar Na+/ H+ antiporter from Arabidopsis thalina in Petunia hybrida, enhances salt and drought tolerance. Journal of Plant Biology 52: 453-461 doi: 10.1007/s12374-009-9058-2
  • Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX et al. (2004). Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Science 167: 849-859 doi: 10.1016/j. plantsci.2004.05.034
  • Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X et al. (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Molecular Plants 2: 22-31 doi: 10.1093/ mp/ssn058
  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P et al. (2000). Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287 (5451): 303- 305. doi: 10.1126/science.287.5451.303
  • Yue Y, Zhang M, Zhang J (2012). SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K(+)/Na(+) ratio. Journal of Plant Physiology 169 (3): 255-261. doi: 10.1016/j.jplph.2011.10.007.
  • Zhang JL, Shi H (2013). Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research 1 (15): 1-22. doi: 10.1007/s11120-013-9813-6.
  • Zhang Yan-Min, Hong-Mei Zhang, Zi-Hui Liu, Li HC, Guo XL et al. (2014). The wheat NHX antiporter gene TaNHX2 confers salt tolerance in transgenic alfalfa by increasing the retention capacity of intracellular potassium. Plant Molecular Biology 87: 317-327. doi: 10.1007/s11103-014-0278-6.
  • Zhang HX, Blumwald E (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology 19: 765-768. doi: 10.1038/90824
  • Zhang JL, Flowers TJ, Wang SM (2010). Mechanisms of sodium uptake by roots of higher plants. Plant Soil 326: 45-60. doi: 10.1007/s11104-009-0076-0
  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001). Engineering salt tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proceedings of the National Academy of Sciences USA 98 (22): 12832-12836. doi: 10.1073/ pnas.231476498
  • Zhou S, Zhang Z, Tang Q (2011). Enhanced v-ATPase activity contributes to the improved salt tolerance of transgenic tobacco plants overexpressing vacuolar Na(+)/H (+) antiporter AtNHX1. Biotechnology Letters 33 (2): 375-380. doi: 10.1016/ S1369-5266(03)00085-2
  • Zhu JK (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology 6 (5): 441-445 doi: 10.1016/ S1369-5266(03)00085-2
  • Zhu JK, Liu J, Xiong L (1998). Genetic analysis of salt tolerance in Arabidopsis: Evidence for a critical role of potassium nutrition. Plant Cell 10 (7): 1181-1191. doi: 10.1105/tpc.10.7.1181
  • Zhang GH, Su Q, An LJ (2008). Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiology and Biochemistry 46: 117-126. doi: 10.1016/j.plaphy.2007.10.022
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Ercan Selçuk ÜNLÜ, Songül GÜREL, Fatemeh AFLAKI, Arman PAZUKI, Günce ŞAHİN, Ekrem GÜREL

Mına KAZEMIAN, Elham Mohajel KAZEMI, Maryam KOLAHI, Valıollah Ghasemı OMRAN

Contribution to the flora of Asian and European countries: new national and regional vascular plant records, 9

Ewelina KLICHOWSKA, Oscar SANCHEZ PEDRAJA, Anna WROBEL, Marcin NOBIS, Jolanta MARCINIUK, Mateusz WOLANIN, Gergely KIRALY, Arkadiusz NOWAK, Beata PASZKO, Gonzalo MORENO MORAL, Renata PIWOWARCZYK, Irina N. EGOROVA, Pavol Eliaš JUN, Denis A. KRIVENKO, Igor V. KUZMIN, Georgy A. LAZKOV, Giacomo MEI, Agni

Samına RUBNAWAZ, Waqas KAYANI, Rashıd MAHMOOD, Bushra MIRZA

Enhanced stress tolerance in transformed Ajuga bracteosa Wall. ex Benth. regenerants by upregulated gene expression of metabolic pathways

Samina RUBNAWAZ, Waqas Khan KAYANI, Rashid MAHMOOD, Bushra MIRZA

Nomenclatural and taxonomic notes on some Centaurea taxa (Asteraceae) from southern Italy

Emanuele DEL GUACCHIO, Duilio IAMONICO, Paola CENNAMO, Paolo CAPUTO

Identification and expressional profiling of putative MAX1 gene in sugar beet (Beta vulgaris L.)

Songül GÜREL, Ercan Selçuk ÜNLÜ, Fatemeh AFLAKİ, Arman PAZUKİ, Günce ŞAHİN, Ekrem GÜREL

Molecular cloning and enzymatic characteristics of chalcone isomerase from Rheum palmatum

Xiaowei HUO, Gang ZHANG, Mengmeng LIU

Identification and in silico analysis of PHANTASTICA gene in Saintpaulia ionantha H. Wendl (Gesneriaceae)

Mina KAZEMIAN, Maryam KOLAHI, Elham MOHAJEL KAZEMI, Valiollah GHASEMI OMRAN

Xıaoweı HUO, Gang ZHANG, Mengmeng LIU