A phylogenetic analysis of genus Onobrychis and its relationships within the tribe Hedysareae (Fabaceae)

Results about a phylogenetic analysis of the genus Onobrychis Mill., tribe Hedysareae DC. are presented. The systematic knowledge of tribe Hedysareae is still incomplete, with difficult circumscription of genera and species. Analyses were undertaken using both nuclear (ITS) and chloroplast (matK) markers for a set of 78 accessions covering 41 Onobrychis species, besides previously sequenced Hedysareae accessions. The phylogenetic methods used were maximum parsimony, maximum likelihood, and Bayesian analyses to produce phylogenetic trees and robustness indices. The genus Onobrychis was resolved as paraphyletic, with species of the genera Eversmannia Bunge and Hedysarum L. nested within it. The position of the section Membranacea of genus Hedysarum was as a sister group to Onobrychis and Eversmannia, separated from other accessions of Hedysarum. Variation in the 2 markers was sufficient to resolve infrageneric groups in Onobrychis and Hedysarum, but we were unable to completely resolve certain species in Onobrychis, particularly those within the sect. Onobrychis. The cause of this difficult species delimitation may be related to recent speciation, hybridization, and introgression events, particularly between cultivated species and their wild relatives, and the presence of cryptospecies as suggested by intraspecific polyploid series.

A phylogenetic analysis of genus Onobrychis and its relationships within the tribe Hedysareae (Fabaceae)

Results about a phylogenetic analysis of the genus Onobrychis Mill., tribe Hedysareae DC. are presented. The systematic knowledge of tribe Hedysareae is still incomplete, with difficult circumscription of genera and species. Analyses were undertaken using both nuclear (ITS) and chloroplast (matK) markers for a set of 78 accessions covering 41 Onobrychis species, besides previously sequenced Hedysareae accessions. The phylogenetic methods used were maximum parsimony, maximum likelihood, and Bayesian analyses to produce phylogenetic trees and robustness indices. The genus Onobrychis was resolved as paraphyletic, with species of the genera Eversmannia Bunge and Hedysarum L. nested within it. The position of the section Membranacea of genus Hedysarum was as a sister group to Onobrychis and Eversmannia, separated from other accessions of Hedysarum. Variation in the 2 markers was sufficient to resolve infrageneric groups in Onobrychis and Hedysarum, but we were unable to completely resolve certain species in Onobrychis, particularly those within the sect. Onobrychis. The cause of this difficult species delimitation may be related to recent speciation, hybridization, and introgression events, particularly between cultivated species and their wild relatives, and the presence of cryptospecies as suggested by intraspecific polyploid series.

___

  • Abou-El-Enain MM (2002). Chromosomal criteria and their phylogenetic implications in the genus Onobrychis Mill. sect. Lophobrychis (Leguminosae), with special reference to Egyptian species. Bot J Linn Soc 139: 409–414.
  • Ahangarian S, Kazempour Osaloo S, Maassoumi AA (2007). Molecular phylogeny of the tribe Hedysareae with special reference to Onobrychis (Fabaceae) as inferred from nrDNA ITS sequences. Iran J Bot 13: 64–74.
  • Akaike H (1974). A new look at the statistical model identification. IEEE Trans Automat Cont 19: 716–723.
  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
  • Arslan E, Ertuğrul K (2010). Genetic relationships of the genera Onobrychis, Hedysarum, and Sartoria using seed storage proteins. Turk J Biol 34: 67–73.
  • Arslan E, Ertuğrul K, Tugay O, Dural H (2012). Karyological studies of the genus Onobrychis Mill. and related genera Hedysarum L. and Sartoria Boiss. & Heldr. (Fabaceae, Hedysareae) from Turkey. Caryologia 65: 11–17.
  • Avcı S, Sancak C, Can A, Acar A, Pınar NM (2013). Pollen morphology of the genus Onobrychis (Fabaceae) in Turkey. Turk J Bot 37: 669–681.
  • Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995). The ITS region of nuclear ribosomal
  • DNA: a valuable source of evidence on angiosperm phylogeny. Ann Mo Bot Gar 82: 247–277. Ball PW (1968). Onobrychis Miller. In: Tutin TG, Heywood VH, editors. Flora Europaea, Vol. 2. Cambridge, UK: Cambridge University Press, pp. 187–191.
  • Baltisberger M (1991). Cytological investigations of some Greek plants. Flora Med 1: 157–173.
  • Bellarosa R, Simeone MC, Papini A, Schirone B (2005). Utility of ITS sequence data for phylogenetic reconstruction of Italian Quercus spp. Mol Phylogenet Evol 34: 355–370.
  • Boissier PE (1872). Flora orientalis sive enumeratio plantarum in oriente: A Graecia et Aegypto ad Indiae fines hucusque observatarum. Vol 2. Geneva, Switzerland.
  • Bremer K (1988). The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795– 80
  • CBOL Plant Working Group (2009). A DNA barcode for land plants. P Natl Acad Sci USA 31: 12795–12797.
  • Chennaoui H, Marghali S, Marrakchi M, Trifi-Farah N (2007). Phylogenetic relationships in the North African genus Hedysarum as inferred from ITS sequences of nuclear ribosomal DNA. Genet Resour Crop Ev 54: 389–397.
  • Chennaoui-Kourda H, Marghalia S, Marrakchia M, Trifi-Farah N (2007). Genetic diversity of Sulla genus (Hedysareae) and related species using inter-simple sequence repeat (ISSR) markers. Biochem Syst Ecol 35: 682–688.
  • Choi B, Ohashi H (1996). Pollen morphology and taxonomy of Hedysarum and its related genera of the tribe Hedysareae (Leguminosae-Papilionoideae). J Jpn Bot 71: 191–213.
  • Choi BH, Ohashi H (2003). Generic criteria and an infrageneric system for Hedysarum and related genera (PapilionoideaeLeguminosae). Taxon 52: 567–576.
  • Cunningham CW (1997). Can three incongruence tests predict when data should be combined? Mol Biol Evol 14: 733–740.
  • De Montmollin B (1984). Etude cytotaxonomique de la flore de la Crete. II. Nombres chromosomiques. Bot Helv 94: 261–267.
  • Dolya K, Vasilissa I (2000). Pollen morphology of the genera Onobrychis and Hedysarum (Hedysareae, Fabaceae) in Bulgaria. Ann Bot Fenn 37: 207–217.
  • Eriksson T (2001). AutoDecay Ver. 5.0 (program distributed by the author). Stockholm, Sweden: Bergius Foundation, Royal Swedish Academy of Sciences.
  • Felsenstein J (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376.
  • Felsenstein J (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.
  • Fulton TM, Chunzoongse J, Tanksley SD (1995). Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13: 207–209.
  • Gömürgen AN (1996). Meiotic analysis of selected material of sainfoin and its progeny with branched and unbranched peduncles. Turk J Bot 20: 399–411.
  • Gültepe M, Uzuner U, Coşkunçelebi K, Beldüz AO, Terzioğlu S (2010). Internal transcribed spacer (ITS) polymorphism in the wild Primula (Primulaceae) taxa of Turkey. Turk J Bot 34: 147–157.
  • Hayot Carbonero C, Mueller-Harvey I, Brown TA, Smith L (2011). Sainfoin (Onobrychis viciifolia): a beneficial forage legume. Plant Gen Res 9: 70–85.
  • Hedge IC (1970). Onobrychis. In: Davis P, editor. Flora of Turkey and the East Aegean Islands, Vol. 3. Edinburgh, UK: Edinburgh University Press, pp. 549–590.
  • Hejazi H, Mohsen S, Nasab MZ (2010). Cytotaxonomy of some Onobrychis (Fabaceae) species and populations in Iran. Caryologia 63: 18–31.
  • Heyn CC (1962). On the cytotaxonomy of Onobrychis cristagalli (L.) Lam. and O. squarrosa Vivi. B Res Counc Israel 3: 177–182.
  • Hu JM, Lavin M, Wojciechowski MF, Sanderson MJ (2000). Phylogenetic systematics of the tribe Millettieae (Leguminosae) based on chloroplast trnK/matK sequences and its implications for evolutionary patterns in Papilionoideae. Am J Bot 87: 418– 4
  • Huelsenbeck JP, Ronquist F (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.
  • İkinci N (2011). Molecular phylogeny and divergence times estimates of Lilium section Liriotypus (Liliaceae) based on plastid and nuclear ribosomal ITS DNA sequence data. Turk J Bot 35: 319–330.
  • Irfan E‚ Turgut-Balik D‚ Sahin A, Kursat M (2007). Total electrophoretic band patterns of some Onobrychis species growing in turkey. J Agr Env Sci 2: 123–126.
  • Issolah R, Benhizia H, Khalfallah N (2006). Karyotype variation within some natural populations of sulla (Hedysarum coronarium L., Fabaceae) in Algeria. Genet Resour Crop Ev 53: 1653–1664.
  • Karamian R, Behjou AM, Ranjbar M (2012). Anatomical findings of Onobrychis sect. Heliobrychis (Fabaceae) in Iran and their taxonomic implications. Turk J Bot 36: 27–37.
  • Khatoon S, Ali SI (1991). Chromosome numbers in subfamily Papilionoideae (Leguminosae) from Pakistan. Willdenowia 20: 159–165.
  • Lavin M, Herendeen P, Wojciechowski MF (2005). Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst Biol 54: 575–594.
  • Lock JM (2005). Tribe Hedysareae. In: Lewis G, Schrire B, Mackinder
  • B, Lock M, editors. Legumes of the World. Kew, UK: Royal Botanical Gardens, pp. 489–495. Lock JM, Schrire BD (2005). Tribe Galegeae. In: Lewis G, Shrive B, Mackinder B, Lock M, editors. Legumes of the World. Kew, UK: Royal Botanical Gardens, pp. 475–488.
  • Mabberley DJ (1990). The Plant-Book: A Portable Dictionary of the Higher Plants. Cambridge, UK: Cambridge University Press.
  • Miller MA, Holder MT, Vos R, Midford PE, Liebowitz T, Chan L, Hoover P, Warnow T (2009). The CIPRES Portals. CIPRES. 4 August 2009. URL: http://www.phylo.org/sub_sections/portal
  • [accessed 18 October 2012].
  • Mosti S, Lewka Bandara N, Papini A (2011). Further insights and new combinations in Aylostera (Cactaceae) based on molecular and morphological data. Pak J Bot 43: 2769–2785.
  • Nylander JAA (2004). Mr Modeltest, version 1.0b. Uppsala, Sweden: Department of Systematic Zoology, EBC, Uppsala University.
  • Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldre JL (2004).
  • Bayesian phylogenetic analysis of combined data. Syst Biol 53: 47– Papini A, Simeone MC, Bellarosa R, Spada F, Schirone B (2011). Quercus macranthera Fisch. & Mey. ex Hohen. and Quercus iberica M.Bieb.: taxonomic definition and systematic relationships with European oaks inferred from nuclear ITS data. Plant Biosyst 145: 37–49.
  • Polhill RM (1981). Papilionoideae. In: Polhill RM, Raven PH, editors. Advances in Legume Systematics. Part 1. Kew, UK: Royal Botanic Gardens, pp. 367–370.
  • Ranjbar M, Hajmoradi F, Karamian R (2012). An overview on cytogenetics of the genus Onobrychis (Fabaceae) with special reference to O. sect. Hymenobrychis from Iran. Caryologia 65: 187–198.
  • Ranjbar M, Karamian R, Hadadi A (2010). Cytosystematics of three Onobrychis species (Fabaceae) in Iran. Caryologia 63: 237–249.
  • Rechinger KH (1984). Onobrychis. In: Rechinger KH, editor. Flora Iranica. Graz, Austria: Akad. Druck. und Verl., 157: 387–464.
  • Rokas A, Williams BL, King N, Carroll SB (2003). Genomescale approaches to resolving incongruence in molecular phylogenies. Nature 425: 798–804.
  • Romano S, Mazzola P, Raimondo FM (1987). Numeri cromosomici per la flora Italiana. Inform Bot Ital 19: 173–180.
  • Schischkin BK, Bobrov EG (1972). Flora of U.S.R.R. Vol. 13. Jerusalem, Israel: Israel Program for Scientific Translations, pp. 244–281.
  • Sepet H, Ozdemir C, Bozdag B (2011). Cytological study the genus Chesneya Lindl. (Fabaceae) in Turkey. Caryologia 64: 184–188.
  • Simeone MC, Papini A, Vessella F, Bellarosa R, Spada F, Schirone B (2009). Multiple genome relationships and a complex biogeographic history in the eastern range of Quercus suber L. (Fagaceae) implied by nuclear and chloroplast DNA variation. Caryologia 62: 236–252.
  • Simeone MC, Piredda R, Papini A, Vessella F, Schirone B (2013). Application of plastid and nuclear markers to DNA barcoding of Euro-Mediterranean oaks (Quercus, Fagaceae): problems, prospects and phylogenetic implications. Bot J Linn Soc 172: 478–499.
  • Simmons MP, Ochoterena H (2000). Gaps as characters in sequencebased phylogenetic analyses. Syst Biol 49: 369–381.
  • Slavivk B, Jarolivmovav V, Chrtek J (1993). Chromosome counts of some plants from Cyprus. Candollea 48: 221–230.
  • Swofford DL (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, MA, USA: Sinauer Associates.
  • Templeton AR (1983). Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37: 221–244.
  • Terzioğlu S, Coşkunçelebi K, Gültepe M (2012). Primula × uzungolensis Primulaceae): a new natural hybrid from NE Anatolia. Turk J Bot 36: 9–19.
  • Thompson JD, Higgins DG, Gibson TJ (1994). ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680.
  • White TJ, Bruns T, Lee S, Taylor J (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.
  • In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR Protocols: A Guide to Methods and Applications. New York, NY, USA: Academic Press, pp. 315–322. Wojciechowski MF (2003). Reconstructing the phylogeny of legumes
  • (Leguminosae): an early 21st century perspective In: Klitgaard BB, Bruneau A, editors. Advances in Legume Systematics. Part Higher Level Systematics. Kew, UK: Royal Botanic Gardens, pp. 5–35. Wojciechowski MF (2005). Astragalus (Fabaceae): a molecular phylogenetic perspective. Brittonia 57: 382–399.
  • Wojciechowski MF, Lavin M, Sanderson MJ (2004). A phylogeny of legumes (Leguminosae) based on analysis of the plastid MATK gene resolves many well-supported subclades within the family. Am J Bot 91: 1846–1862.
  • Wojciechowski MF, Sanderson MJ, Hu JM (1999). Evidence on the monophyly of Astragalus (Fabaceae) and its major subgroups based on nuclear ribosomal DNA ITS and chloroplast DNA trnL intron data. Syst Bot 24: 409–437.
  • Wojciechowski MF, Sanderson MJ, Steele KP, Liston A (2000). Molecular phylogeny of the “temperate herbaceous tribes” of Papilionoid legumes: a supertree approach. In: Herendeen PS, Bruneau A, editors. Advances in Legume Systematics. Part 9. Kew, UK: Royal Botanic Gardens, pp. 277–298.
  • Yildiz B, Ciplak B, Aktoklu E (1999). Fruit morphology of sections of the genus Onobrychis Miller (Fabaceae) and its phylogenetic implications. Isr J Plant Sci 47: 269–282.
  • Young ND, Healy J (2003). GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinformatics 4: 6.
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Callogenesis and production of anthocyanin and chlorophyll in callus cultures of vegetative and floral explants in Rosa gallica and Rosa hybrida (Rosaceae)

Roshanak TARRAHI, Farkhondeh REZANEJAD

Rafflesia sharifah-hapsahiae (Rafflesiaceae), a new species from Peninsular Malaysia

Jumaat Haji ADAM, Rahmah MOHAMED, Mohd Afiq Aizat JUHARI

Euglenozoa occurring in Adzopé Reservoir, Côte D’Ivoire

Blé Alexis Tardy KOUASSI, Allassane OUATTARA, Kouhété Philippe DA

Molecular phylogeny of Galanthus (Amaryllidaceae) of Anatolia inferred from multiple nuclear and chloroplast DNA regions

Nivart Taşci MARGOZ, İbrahim Sırrı YÜZBAŞIOĞLU, Zeynep ÇELEN, Tuna EKİM, Ayşe Neşe BİLGİN

Ranking of 11 coastal halophytes from salt marshes in northwest Turkey according their salt tolerance

Christian ZÖRB, Ali SÜMER, Ali SUNGUR, Timothy J. FLOWERS, Hasan ÖZCAN

Shortcut to long-distance developing of a tissue culture medium: micropropagation of mature almond cultivars as a case study

Mehmet Nuri NAS, Yüksel BÖLEK, Nevzat SEVGİN

Protective role of foliar-applied nitric oxide in Triticum aestivum under saline stress

Farhana KAUSAR, Muhammad SHAHBAZ, Muhammad ASHRAF

Morphological and ecological evidence for a new infraspecific taxon of the wallflower Erysimum cheiri (Brassicaceae) as an indigenous endemism of the southwestern Mediterranean

Samira OUARMIM, Chloé DUBSET, Errol VELA

Classification of Camellia species from 3 sections using leaf anatomical data with back-propagation neural networks and support vector machines

Wu JIANG, Billur Barshan ÖZAKTAŞ, Nitin MANTRI, Zhengming TAO, Hongfei LU

Euglenozoa occurring in Adzopé Reservoir, Côte D’Ivoire

Blé Alexis Tardy KOUASSI, Kouhété Philippe DA, Allassane OUATTARA