Systematic analysis of the frequently amplified 2p15-p16.1 locus reveals PAPOLG as a potential proto-oncogene in follicular and transformed follicular lymphoma

Systematic analysis of the frequently amplified 2p15-p16.1 locus reveals PAPOLG as a potential proto-oncogene in follicular and transformed follicular lymphoma

Transformed follicular lymphoma (tFL) originates from histological transformation of follicular lymphoma (FL), which isthe most common indolent non-Hodgkin lymphoma. High-resolution genomic copy-number analysis previously identified frequentamplification of the 2p15-p16.1 locus in FL and tFL cases. The genes (i.e. BCL11A, PAPOLG, PUS10, and USP34) in this amplifiedlocus have not been systematically investigated to date in terms of their role in FL pathogenesis or transformation to tFL. Here weinvestigated the relationship between amplification and expression of genes in 2p15-p16.1 as well as their expression after histologicaltransformation. NCBI GEO SNP array and gene expression profile (GEP) data of tFL cases were analyzed to evaluate the relationshipbetween amplification and mRNA expression. Moreover, transcript levels of these four genes in FL cases were compared with thoseof patient-matched tFL cases and normal B-cells. Amplification of the 2p15-p16.1 locus is associated with increased transcription ofBCL11A and PAPOLG in tFL cases, of which the latter showed increased expression after histological transformation. Compared withthe level in normal B-cells, PAPOLG was significantly overexpressed in FL cases, but expression levels of the other three genes did notshow any significant difference. Altogether these results suggest that PAPOLG may be the most critical gene in terms of transformationto tFL.

___

  • Al-Tourah AJ, Gill KK, Chhanabhai M, Hoskins PJ, Klasa RJ, Savage KJ, Sehn LH, Shenkier TN, Gascoyne RD, Connors JM (2008). Population-based analysis of incidence and outcome of transformed non-Hodgkin’s lymphoma. J Clin Oncol 26: 5165- 5169.
  • Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M et al. (2013). NCBI GEO: archive for functional genomics data sets— update. Nucleic Acids Res 41(Databaseissue): D991-D995.
  • Bea S, Tort F, Pinyol M, Puig X, Hernandez L, Hernandez S, Fernandez PL, van Lohuizen M, Colomer D, Campo E (2001). BMI-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas. Cancer Res 61: 2409-2412.
  • Bhargava R, Gerald WL, Li AR, Pan Q, Lal P, Ladanyi M, Chen B (2005). EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR activating mutations. Mod Pathol 18: 1027-1033.
  • Borah S, Xi L, Zaug AJ, Powell NM, Dancik GM, Cohen SB, Costello JC, Theodorescu D, Cech TR (2015). TERT promoter mutations and telomerase reactivation in urothelial cancer. Science 347: 1006-1010.
  • Bouska A, McKeithan TW, Deffenbacher KE, Lachel C, Wright GW, Iqbal J, Smith LM, Zhang W, Kucuk C, Rinaldi A et al. (2014). Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma. Blood 123: 1681-1690.
  • Bouska A, Zhang W, Gong Q, Iqbal J, Scuto A, Vose J, Ludvigsen M, Fu K, Weisenburger DD, Greiner TC et al. Combined copy number and mutation analysis identifies oncogenic pathways associated with transformation of follicular lymphoma. Leukemia 2017; 31: 83-91.
  • Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM (1984). Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224: 1121-1124.
  • Chalifa-Caspi V, Shmueli O, Benjamin-Rodrig H, Rosen N, Shmoish M, Yanai I, Ophir R, Kats P, Safran M, Lancet D (2003). GeneAnnot: interfacing GeneCards with high-throughput gene expression compendia. Brief Bioinform 4: 349-360.
  • Coco FL, Gaidano G, Louie DC, Offit K, Chaganti RS, DallaFavera R (1993). p53 mutations are associated with histologic transformation of follicular lymphoma. Blood 82: 2289-2295.
  • Diumenjo MC, Abriata G, Forman D, Sierra MS (2016). The burden of non-Hodgkin lymphoma in Central and South America. Cancer Epidemiol 44 Suppl 1: S168- S177.
  • Eide MB, Liestøl K, Lingjærde OC, Hystad ME, Kresse SH, Mezazepeda L, Myklebost O, Trøen G, Aamot HV, Holte H et al. (2010). Genomic alterations reveal potential for higher grade transformation in follicular lymphoma and confirm parallel evolution of tumor cell clones. Blood 116: 1489-1497.
  • Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J et al. (2007). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316: 1039-1043.
  • Gentles AJ, Alizadeh AA, Lee SI, Myklebust JH, Shachaf CM, Shahbaba B, Levy R, Koller D, Plevritis SK (2009). A pluripotency signature predicts histologic transformation and influences survival in follicular lymphoma patients. Blood 114: 3158-3166.
  • He D, Wu H, Ding L, Li Y (2014). Combination of BCL11A siRNA with vincristine increases the apoptosis of SUDHL6 cells. Eur J Med Res 19: 34.
  • Hu X, Baytak E, Li J, Akman B, Okay K, Hu G, Scuto A, Zhang W, Kucuk C (2017). The relationship of REL proto-oncogene to pathobiology and chemoresistance in follicular and transformed follicular lymphoma. Leuk Res 54: 30-38.
  • Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M (1999). The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397: 164-168.
  • Kamalampeta R, Keffer-Wilkes LC, Kothe U (2013). tRNA binding, positioning, and modification by the pseudouridine synthase Pus10. J Mol Biol 425: 3863-3874.
  • Khaled WT, Choon Lee S, Stingl J, Chen X, Raza Ali H, Rueda OM, Hadi F, Wang J, Yu Y, Chin SF et al. (2015). BCL11A is a triplenegative breast cancer gene with critical functions in stem and progenitor cells. Nat Commun 6: 5987.
  • Kridel R, Sehn LH, Gascoyne RD (2012). Pathogenesis of follicular lymphoma. J Clin Invest 122: 3424-3431.
  • Küppers R, Stevenson FK (2018). Critical influences on the pathogenesis of follicular lymphoma. Blood 131: 2297-2306.
  • Kyriakopoulou CB, Nordvarg H, Virtanen A (2001). A novel nuclear human poly(A) polymerase (PAP), PAP gamma. J Biol Chem 276: 33504-33511.
  • Lenz G, Wright GW, Emre NCT, Kohlhammer H, Dave SS, Davis RE, Carty S, Lam LT, Shaffer AL, Xiao W et al. (2008). Molecular subtypes of diffuse large B cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci U S A 105: 13520-13525.
  • Li Y, Zou L, Li Q, Haibe-Kains B, Tian R, Li Y, Desmedt C, Sotiriou C, Szallasi Z, Iglehart JD et al. (2010). Amplification of LAPTM4B and YWHAZ contributes to chemotherapy resistance and recurrence of breast cancer. Nat Med 16: 214-218.
  • Link BK (2018). Transformation of follicular lymphoma - Why does it happen and can it be prevented? Best Pract Res Clin Haematol 31: 49-56.
  • Lossos IS, Alizadeh AA, Diehn M, Warnke R, Thorstenson Y, Oefner PJ, Brown PO, Botstein D, Levy R (2002). Transformation of follicular lymphoma to diffuse large-cell lymphoma: alternative patterns with increased or decreased expression of c-myc and its regulated genes. Proc Natl Acad Sci U S A 99: 8886-8891.
  • Lossos IS, Gascoyne RD (2011). Transformation of follicular lymphoma. Best Pract Res Clin Haematol 24: 147-163.
  • Lui TTH, Lacroix C, Ahmed SM, Goldenberg SJ, Leach CA, Daulat AM, Angers S (2011). The ubiquitin-specific protease USP34 regulates axin stability and Wnt/beta-catenin signaling. Mol Cell Biol 31: 2053-2065.
  • Martin-Subero JI, Gesk S, Harder L, Sonoki T, Tucker PW, Schlegelberger B, Grote W, Novo FJ, Calasanz MJ, Hansmann ML et al. (2002). Recurrent involvement of the REL and BCL11A loci in classical Hodgkin lymphoma. Blood 99: 1474- 1477.
  • McCleverty CJ, Hornsby M, Spraggon G, Kreusch A (2007). Crystal structure of human Pus10, a novel pseudouridine synthase. J Mol Biol 373: 1243-1254.
  • Minoia C, Zucca E, Conconi A (2018). Novel acquisitions on biology and management of transformed follicular lymphoma. Hematol Oncol 36: 617-623.
  • Okosun J, Bodor C, Wang J, Araf S, Yang CY, Pan C, Boller S, Cittaro D, Bozek M, Iqbal S et al. (2014). Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet 46: 176-181.
  • Press MF, Bernstein L, Thomas PA, Meisner LF, Zhou JY, Ma Y, Hung G, Robinson RA, Harris C, El-Naggar A et al. (1997). HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node negative breast carcinomas. J Clin Oncol 15: 2894-2904.
  • Scorilas A, Talieri M, Ardavanis A, Courtis N, Dimitriadis E, Yotis J, Tsiapalis CM, Trangas T (2000). Polyadenylate polymerase enzymatic activity in mammary tumor cytosols: a new independent prognostic marker in primary breast cancer. Cancer Res 60: 5427-5433.
  • She QB, Chandarlapaty S, Ye Q, Lobo J, Haskell KM, Leander KR, DeFeo-Jones D, Huber HE, Rosen N (2008). Breast tumor cells with PI3K mutation or HER2 amplification are selectively addicted to Akt signaling. PLoS One 3: e3065.
  • Sy SMH, Jiang J, O WS, Deng Y, Huen MSY (2013). The ubiquitin specific protease USP34 promotes ubiquitin signaling at DNA double-strand breaks. Nucleic Acids Res 41: 8572-8580.
  • Topalian SL, Gonzales MI, Ward Y, Wang X, Wang R (2002). Revelation of a cryptic major histocompatibility complex class ii-restricted tumor epitope in a novel RNA-processing enzyme. Cancer Res 62: 5505-5509.
  • Topalian SL, Kaneko S, Gonzales MI, Bond GL, Ward Y, Manley JL (2001). Identification and functional characterization of neopoly(A) polymerase, an RNA processing enzyme overexpressed in human tumors. Mol Cell Biol 21: 5614-5623.
  • Tsujimoto Y, Cossman J, Jaffe E, Croce CM (1985). Involvement of the bcl-2 gene in human follicular lymphoma. Science 228: 1440-1443.
  • Yang Q, Nausch LWM, Martin G, Keller W, Doublié S (2014). Crystal structure of human poly(A) polymerase gamma reveals a conserved catalytic core for canonical poly(A) polymerases. J Mol Biol 426: 43-50.
  • Yin B, Delwel R, Valk PJ, Wallace MR, Loh ML, Shannon KM (2009). A retroviral mutagenesis screen reveals strong cooperation between Bcl11a overexpression and loss of the Nf1 tumor suppressor gene. Blood 113: 1075-1085.