Mechanisms of mRNA polyadenylation

Mechanisms of mRNA polyadenylation

mRNA 3'-end processing involves the addition of a poly(A) tail based on the recognition of the poly(A) signal and subsequent cleavage of the mRNA at the poly(A) site. Alternative polyadenylation (APA) is emerging as a novel mechanism of gene expression regulation in normal and in disease states. APA results from the recognition of less canonical proximal or distal poly(A) signals leading to changes in the 3' untranslated region (UTR) lengths and even in some cases changes in the coding sequence of the distal part of the transcript. Consequently, RNA-binding proteins and/or microRNAs may differentially bind to shorter or longer isoforms. These changes may eventually alter the stability, localization, and/or translational efficiency of the mRNAs. Overall, the 3' UTRs are gaining more attention as they possess a significant posttranscriptional regulation potential guided by APA, microRNAs, and RNA-binding proteins. Here we provide an overview of the recent developments in the APA field in connection with cancer as a potential oncogene activator and/or tumor suppressor silencing mechanism. A better understanding of the extent and significance of APA deregulation will pave the way to possible new developments to utilize the APA machinery and its downstream effects in cancer cells for diagnostic and therapeutic applications.

___

  • References Akman BH, Can T, Erson-Bensan AE (2012). Estrogen-induced upregulation and 3’-UTR shortening of CDC6. Nucleic Acids Res 40: 10679–10688. Akman HB, Erson-Bensan AE (2014). Alternative polyadenylation and its impact on cellular processes. MicroRNA 3: 2–9. Alt FW, Bothwell AL, Knapp M, Siden E, Mather E, Koshland M, Baltimore D (1980). Synthesis of secreted and membrane- bound immunoglobulin mu heavy chains is directed by mRNAs that differ at their 3’ ends. Cell 20: 293–301. Barnard DC, Ryan K, Manley JL, Richter JD (2004). Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell 119: 641–651. Batra R, Manchanda M, Swanson MS (2015). Global insights into alternative polyadenylation regulation. RNA Biol 12: 597–602. Bava FA, Eliscovich C, Ferreira PG, Miñana B, Ben-Dov C, Guigó R, Valcárcel J, Méndez R (2013). CPEB1 coordinates alternative 3’-UTR formation with translational regulation. Nature 495: 121–125. Berg MG, Singh LN, Younis I, Liu Q, Pinto AM, Kaida D, Zhang Z, Cho S, Sherrill-Mix S, Wan L et al. (2012). U1 snRNP determines mRNA length and regulates isoform expression. Cell 150: 53–64. Cardinale S, Cisterna B, Bonetti P, Aringhieri C, Biggiogera M, Barabino SM (2007). Subnuclear localization and dynamics of the pre-mRNA 3’ end processing factor mammalian cleavage factor I 68-kDa subunit. Mol Biol Cell 18: 1282–1292. Cevher MA, Zhang X, Fernandez S, Kim S, Baquero J, Nilsson P, Lee S, Virtanen A, Kleiman FE (2010). Nuclear deadenylation/ polyadenylation factors regulate 3’ processing in response to DNA damage. EMBO J 29: 1674–1687. Chan SL, Huppertz I, Yao C, Weng L, Moresco JJ, Yates JR, Ule J, Manley JL, Shi Y (2014). CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3’ processing. Genes Dev 28: 2370–2380. Chuvpilo S, Zimmer M, Kerstan A, Glöckner J, Avots A, Escher C, Fischer C, Inashkina I, Jankevics E, Berberich-Siebelt F et al. (1999). Alternative polyadenylation events contribute to the induction of NF-ATc in effector T cells. Immunity 10: 261–269. Clerte C, Hall KB (2004). Global and local dynamics of the U1A polyadenylation inhibition element (PIE) RNA and PIE RNA– U1A complexes. Biochemistry 43: 13404–13415. Cornett AL, Lutz CS (2014). Regulation of COX-2 expression by miR-146a in lung cancer cells. RNA 20: 1419–1430. Coseno M, Martin G, Berger C, Gilmartin G, Keller W, Doublie S (2008). Crystal structure of the 25 kDa subunit of human cleavage factor I-m. Nucleic Acids Res 36: 3474–3483. Dantonel JC, Murthy KG, Manley JL, Tora L (1997). Transcription factor TFIID recruits factor CPSF for formation of 3’ end of mRNA. Nature 389: 399–402. Dass B, Tardif S, Park JY, Tian B, Weitlauf HM, Hess RA, Carnes K, Griswold MD, Small CL, MacDonald CC (2007). Loss of polyadenylation protein ┬ CSTF-64 causes spermatogenic defects and male infertility. P Nat Acad Sci USA 104: 20374– 20379. Derti A, Garrett-Engele P, Macisaac KD, Stevens RC, Sriram S, Chen R, Rohl CA, Johnson JM, Babak T (2012). A quantitative atlas of polyadenylation in five mammals. Genome Res 22: 1173– 1183. Dettwiler S, Aringhieri C, Cardinale S, Keller W, Barabino SM (2004). Distinct sequence motifs within the 68-kDa subunit of cleavage factor Im mediate RNA binding, protein-protein interactions, and subcellular localization. J Biol Chem 279: 35788–35797. Di Giammartino DC, Nishida K, Manley JL (2011). Mechanisms and consequences of alternative polyadenylation. Mol Cell 43: 853–866. Early P, Rogers J, Davis M, Calame K, Bond M, Wall R, Hood L (1980). Two mRNAs can be produced from a single immunoglobulin mu gene by alternative RNA. Cell 20: 313–319. Edmonds M, Abrams RJ (1960). Polynucleotide biosynthesis- formation of a sequence of adenylate units from adenosine triphosphate by an enzyme from thymus nuclei. J Biol Chem 235: 1142–1149. Elkon R, Drost J, van Haaften G, Jenal M, Schrier M, Vrielink JA, Agami R (2012). E2F mediates enhanced alternative polyadenylation in proliferation. Genome Biol 13: R59. Elkon R, Ugalde AP, Agami R (2013). Alternative cleavage and polyadenylation: extent, regulation and function. Nat Rev Genet 14: 496–506. Fu Y, Sun Y, Li Y, Li J, Rao X, Chen C, Xu A (2011). Differential genome-wide profiling of tandem 3’ UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res 21: 741–747. Fukumitsu H, Soumiya H, Furukawa S (2012). Knockdown of pre- mRNA cleavage factor Im 25 kDa promotes neurite outgrowth. Biochem Biophys Res Commun 425: 848–853. Glover-Cutter K, Kim S, Espinosa J, Bentley DL (2008). RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat Struct Mol Biol 15: 71–78. Gruber AR, Martin G, Keller W, Zavolan M (2012). Cleavage factor Im is a key regulator of 3’ UTR length. RNA Biol 9: 1405–1412. Guhaniyogi J, Brewer G (2001). Regulation of mRNA stability in mammalian cells. Gene 265: 11–23. Ichinose J, Watanabe K, Sano A, Nagase T, Nakajima J, Fukayama M, Yatomi Y, Ohishi N, Takai D (2014). Alternative polyadenylation is associated with lower expression of PABPN1 and poor prognosis in non-small cell lung cancer. Cancer Sci 105: 1135–1141. Ji Z, Lee JY, Pan Z, Jiang B, Tian B (2009). Progressive lengthening of 3’ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. P Natl Acad Sci USA 106: 7028–7033. Ji Z, Luo W, Li W, Hoque M, Pan Z, Zhao Y, Tian B (2011). Transcriptional activity regulates alternative cleavage and polyadenylation. Mol Syst Biol 7: 534. Kaida D, Berg MG, Younis I, Kasim M, Singh LN, Wan L, Dreyfuss G (2010). U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 468: 664–668. Kleiman FE, Manley JL (2001). The BARD1-CstF-50 interaction links mRNA 3’ end formation to DNA damage and tumor suppression. Cell 104: 743–753. Knapinska AM, Irizarry-Barreto P, Adusumalli S, Androulakis L, Brewer G (2005). Molecular mechanisms regulating mRNA stability: physiological and pathological significance. Curr Genomics 6: 471–486. Kubo T, Wada T, Yamaguchi Y, Shimizu A, Handa H (2006). Knock- down of 25 kDa subunit of cleavage factor Im in Hela cells alters alternative polyadenylation within 3’-UTRs. Nucleic Acids Res 34: 6264–6271. Kwon C, Tak H, Rho M, Chang HR, Kim YH, Kim KT, Balch C, Lee EK, Nam S (2014). Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells. Biochem Biophys Res Commun 446: 218–223. Laishram RS, Anderson RA (2010). The poly A polymerase Star-PAP controls 3’-end cleavage by promoting CPSF interaction and specificity toward the pre-mRNA. EMBO J 29: 4132–4145. Li H, Tong S, Li X, Shi H, Ying Z, Gao Y, Ge H, Niu L, Teng M (2011). Structural basis of pre-mRNA recognition by the human cleavage factor Im complex. Cell Res 21: 1039–1051. Liaw HH, Lin CC, Juan HF, Huang HC (2013). Differential microRNA regulation correlates with alternative polyadenylation pattern between breast cancer and normal cells. PLoS One 8: e56958. Liu Y, Hu W, Murakawa Y, Yin J, Wang G, Landthaler M, Yan J (2013). Cold-induced RNA-binding proteins regulate circadian gene expression by controlling alternative polyadenylation. Sci Rep 3: 2054. Lutz CS, Moreira A (2011). Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression. Wiley Interdiscip Rev RNA 2: 22–31. Mandel CR, Kaneko S, Zhang H, Gebauer D, Vethantham V, Manley JL, Tong L (2006). Polyadenylation factor CPSF-73 is the pre- mRNA 3’-end-processing endonuclease. Nature 444: 953–956. Martin G, Gruber AR, Keller W, Zavolan M (2012). Genome-wide analysis of pre-mRNA 3’ end processing reveals a decisive role of human cleavage factor I in the regulation of 3’ UTR length. Cell Rep 1: 753–763. Martin G, Ostareck-Lederer A, Chari A, Neuenkirchen N, Dettwiler S, Blank D, Rüegsegger U, Fischer U, Keller W (2010). Arginine methylation in subunits of mammalian pre-mRNA cleavage factor I. RNA 16: 1646–1659. Marzluff WF, Wagner EJ, Duronio RJ (2008). Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 9: 843–854. Masamha CP, Xia Z, Yang J, Albrecht TR, Li M, Shyu AB, Li W, Wagner EJ (2014). CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature 510: 412–416. Mayr C, Bartel DP (2009). Widespread shortening of 3’ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138: 673–684. Millevoi S, Loulergue C, Dettwiler S, Karaa SZ, Keller W, Antoniou M, Vagner S (2006). An interaction between U2AF 65 and CF I(m) links the splicing and 3’ end processing machineries. EMBO J 25: 4854–4864. Millevoi S, Vagner S (2010). Molecular mech anisms of eukaryotic pre-mRNA 3’ end processing regulation. Nucleic Acids Res 38: 2757–2774. Morris AR, Bos A, Diosdado B, Rooijers K, Elkon R, Bolijn AS, Carvalho B, Meijer GA, Agami R (2012). Alternative cleavage and polyadenylation during colorectal cancer development. Clin Cancer Res 18: 5256–5266. Nag A, Narsinh K, Martinson HG (2007). The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase. Nat Struct Mol Biol 14: 662–669. Pinto PA, Henriques T, Freitas MO, Martins T, Domingues RG, Wyrzykowska PS, Coelho PA, Carmo AM, Sunkel CE, Proudfoot NJ et al. (2011). RNA polymerase II kinetics in polo polyadenylation signal selection. EMBO J 30: 2431–2444. Proudfoot NJ, Furger A, Dye MJ (2002). Integrating mRNA Processing with Transcription. Cell 108: 501–512. Radermacher M, Wagenknecht T, Verschoor A, Frank J (1987). Three-dimensional structure of the large ribosomal subunit from Escherichia coli. EMBO J 6: 1107–1114. Rehfeld A, Plass M, Døssing K, Knigge U, Kjær A, Krogh A, Friis- Hansen L (2014). Alternative polyadenylation of tumor suppressor genes in small intestinal neuroendocrine tumors. Front Endocrinol (Lausanne) 5: 46. Rehfeld A, Plass M, Krogh A, Friis-Hansen L (2013). Alterations in polyadenylation and its implications for endocrine diseases. Front Endocrinol (Lausanne) 4: 53. Rogers J, Early P, Carter C, Calame K, Bond M, Hood L, Wall R (1980). Two mRNAs with different 3’ ends encode membrane- bound and secreted forms of immunoglobulin mu chain. Cell 20: 303–312. Romeo V, Griesbach E, Schümperli D (2014). CstF64: Cell cycle regulation and functional role in 3’ end processing of replication-dependent histone mRNAs. Mol Cell Biol 34: 4272–4284. Ruepp MD, Aringhieri C, Vivarelli S, Cardinale S, Paro S, Schümperli D, Barabino SM (2009). Mammalian pre-mRNA 3’ end processing factor CF I m 68 functions in mRNA export. Mol Biol Cell 20: 5211–5223. Ruepp MD, Vivarelli S, Pillai RS, Kleinschmidt N, Azzouz TN, Barabino SM, Schümperli D (2010). The 68 kDa subunit of mammalian cleavage factor I interacts with the U7 small nuclear ribonucleoprotein and participates in 3’-end processing of animal histone mRNAs. Nucleic Acids Res 38: 7637–7650. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008). Proliferating cells express mRNAs with shortened 3’ untranslated regions and fewer microRNA target sites. Science 320: 1643–1647. Schönemann L, Kühn U, Martin G, Schäfer P, Gruber AR, Keller W, Zavolan M, Wahle E (2014). Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33. Genes Dev 28: 2381–2393. Setzer DR, McGrogan M, Nunberg JH, Schimke RT (1980). Size heterogeneity in the 3’ end of dihydrofolate reductase messenger RNAs in mouse cells. Cell 22: 361–370. Shell SA, Hesse C, Morris SM, Milcarek C (2005). Elevated levels of the 64-kDa cleavage stimulatory factor (CstF-64) in lipopolysaccharide-stimulated macrophages influence gene expression and induce alternative poly(A) site selection. J Biol Chem 280: 39950–39961. Shi YS, Di Giammartino DC, Taylor D, Sarkeshik A, Rice WJ, Yates JR, Frank J, Manley JL (2009). Molecular architecture of the human Pre-mRNA 3’ processing complex. Mol Cell 33: 365– 376. Spies N, Burge CB, Bartel DP (2013). 3’ UTR-isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts. Genome Res 23: 2078– 2090. Spies N, Nielsen CB, Padgett RA, Burge CB (2009). Biased chromatin signatures around polyadenylation sites and exons. Mol Cell 36: 245–254. Sun M, Ju H, Zhou Z, Zhu R (2014). Pilot genome-wide study of tandem 3’ UTRs in esophageal cancer using high-throughput sequencing. Mol Med Rep 9: 1597–1605. Takagaki Y, Macdonald CC, Shenk T, Manley JL (1992). The human 64-kDa polyadenylylation factor contains a ribonucleoprotein- type RNA-binding domain and unusual auxiliary motifs. P Natl Acad Sci USA 89: 1403–1407. Takagaki Y, Manley JL (1997). RNA recognition by the human polyadenylation factor CstF. Mol Cell Biol 17: 3907–3914. Takagaki Y, Manley JL (1998). Levels of polyadenylation factor CstF- 64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation. Mol Cell 2: 761– 771. Takagaki Y, Manley JL (2000). Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol Cell Biol 20: 1515–1525. Tian B, Graber JH (2012). Signals for pre-mRNA cleavage and polyadenylation. Wiley Interdiscip Rev RNA 3: 385–396. Vlasova IA, Tahoe NM, Fan D, Larsson O, Rattenbacher B, Sternjohn JR, Vasdewani J, Karypis G, Reilly CS, Bitterman PB et al. (2008). Conserved GU-rich elements mediate mRNA decay by binding to CUG-binding protein 1. Mol Cell 29: 263–270. Vorlová S, Rocco G, Lefave CV, Jodelka FM, Hess K, Hastings ML, Henke E, Cartegni L (2011). Induction of antagonistic soluble decoy receptor tyrosine kinases by intronic polyA activation. Mol Cell 43: 927–939. West S, Proudfoot NJ (2008). Human Pcf11 enhances degradation of RNA polymerase II-associated nascent RNA and transcriptional termination. Nucleic Acids Res 36: 905–914. Whyteside AR, Turner AJ, Lambert DW (2014). Endothelin- converting enzyme-1 (ECE-1) is post-transcriptionally regulated by alternative polyadenylation. PLoS One 9: 83260. Wurth L, Gebauer F (2015). RNA-binding proteins, multifaceted translational regulators in cancer. Biochim Biophys Acta 1849: 881–886. Yang Q, Gilmartin GM, Doublié S (2010). Structural basis of UGUA recognition by the Nudix protein CFI m 25 and implications for a regulatory role in mRNA 3’ processing. P Natl Acad Sci USA 107: 10062–10067. Yang Q, Gilmartin GM, Doublié S (2011). The structure of human cleavage factor I m hints at functions beyond UGUA-specific RNA binding: a role in alternative polyadenylation and a potential link to 5’ capping and splicing. RNA Biol 8: 748–753. Yao CG, Biesinger J, Wan J, Weng LJ, Xing Y, Xie XH, Shi YS (2012). Transcriptome-wide analyses of CstF64-RNA interactions in global regulation of mRNA alternative polyadenylation. P Natl Acad Sci USA 109: 18773–18778. Yu L, Volkert MR (2013). UV damage regulates alternative polyadenylation of the RPB2 gene in yeast. Nucleic Acids Res 41: 3104–3114. Zhu H, Zhou HL, Hasman RA, Lou H (2007). Hu proteins regulate polyadenylation by blocking sites containing U-rich sequences. J Biol Chem 282: 2203–2210. Zhu ZH, Yu YP, Shi YK, Nelson JB, Luo JH (2008). CSR1 induces cell death through inactivation of CPSF3. Oncogene 28: 41–51