Integration of transcriptomic profile of SARS-CoV-2 infected normal human bronchial epi-thelial cells with metabolic and protein-protein interaction networks

A novel coronavirus (SARS-CoV-2, formerly known as nCoV-2019) that causes an acute respiratory disease has emerged in Wuhan, China and spread globally in early 2020. On January the 30th, the World Health Organization (WHO) declared spread of this virus as an epidemic and a public health emergency. With its highly contagious characteristic and long incubation time, confinement of SARS-CoV-2 requires drastic lock-down measures to be taken and therefore early diagnosis is crucial. We analysed transcriptome of SARS-CoV-2 infected human lung epithelial cells, compared it with mock-infected cells, used network-based reporter metabolite approach and integrated the transcriptome data with protein-protein interaction network to elucidate the early cellular response. Significantly affected metabolites have the potential to be used in diagnostics while pathways of protein clusters have the potential to be used as targets for supportive or novel therapeutic approaches. Our results are in accordance with the literature on response of IL6 family of cytokines and their importance, in addition, we find that matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9) with keratan sulfate synthesis pathway may play a key role in the infection. We hypothesize that MMP9 inhibitors have potential to prevent "cytokine storm" in severely affected patients.

___

  • Akhmedov M, 2017, PLOS COMPUT BIOL, V13, DOI 10.1371/journal.pcbi.1005694
  • Aquino RS, 2016, FRONT BIOSCI-LANDMRK, V21, P1260, DOI 10.2741/4455
  • Barrett T, 2013, NUCLEIC ACIDS RES, V41, pD991, DOI 10.1093/nar/gks1193
  • Blanco-Melo D, 2020, CELL, V181, P1036, DOI 10.1016/j.cell.2020.04.026
  • Blondel VD, 2008, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2008/10/P10008
  • Bray NL, 2016, NAT BIOTECHNOL, V34, P888, DOI 10.1038/nbt0816-888d
  • Cakir T, 2015, SCI REP-UK, V5, DOI 10.1038/srep14563
  • CHANDRA N, 2019, VIRUSES-BASEL, V11, DOI DOI 10.3390/V11030247
  • Chavakis T, 2004, MICROBES INFECT, V6, P1219, DOI 10.1016/j.micinf.2004.08.004
  • Colson P, 2020, INT J ANTIMICROB AG, V55, DOI 10.1016/j.ijantimicag.2020.105932
  • Csardi G., 2006, INT J COMPLEX SYSTEM, V1695, P1, DOI DOI 10.3724/SP.J.1087.2009.02191
  • Dabo AJ, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135970
  • Elkington PTG, 2005, CLIN EXP IMMUNOL, V142, P12, DOI [10.1111/j.1365-2249.2005.02840.x, 10.1111/j.1365-2249.2005.02840.X]
  • Foronjy RF, 2014, BMC IMMUNOL, V15, DOI 10.1186/s12865-014-0041-4
  • Guha D, 2015, J INTERF CYTOK RES, V35, P373, DOI 10.1089/jir.2014.0135
  • Guo YR, 2020, MILITARY MED RES, V7, DOI 10.1186/s40779-020-00240-0
  • Herold T, 2020, J ALLERGY CLIN IMMUN, V146, P128, DOI 10.1016/j.jaci.2020.05.008
  • Hudson BI, 2018, ANNU REV MED, V69, P349, DOI 10.1146/annurev-med-041316-085215
  • Hui LX, 2020, PLOS PATHOG, V16, DOI 10.1371/journal.ppat.1008509
  • Jiang F, 2020, J GEN INTERN MED, V35, P1545, DOI 10.1007/s11606-020-05762-w
  • Jinno A, 2015, METHODS MOL BIOL, V1229 .
  • Leinonen R, 2011, NUCLEIC ACIDS RES, V39, pD19, DOI 10.1093/nar/gkq1019
  • Liao QJ, 2005, ACTA BIOCH BIOPH SIN, V37, P607, DOI 10.1111/j.1745-7270.2005.00082.x
  • Love MI, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0550-8
  • Lu RJ, 2020, LANCET, V395, P565, DOI 10.1016/S0140-6736(20)30251-8
  • Marten Norman W., 2005, P839, DOI 10.1007/0-387-25518-4_48
  • Mason RJ, 2020, EUR RESPIR J, V55, DOI 10.1183/13993003.00607-2020
  • Miller AL, 2004, J INFECT DIS, V189, P1419, DOI 10.1086/382958
  • Nepusz T, 2012, NAT METHODS, V9, P471, DOI [10.1038/NMETH.1938, 10.1038/nmeth.1938]
  • Ohtsu A, 2017, EXP THER MED, V14, P4363, DOI 10.3892/etm.2017.5045
  • Patil KR, 2005, P NATL ACAD SCI USA, V102, P2685, DOI 10.1073/pnas.0406811102
  • Rojas-Quintero J, 2018, JCI INSIGHT, V3, DOI 10.1172/jci.insight.99022
  • Ruiz-Gomez G, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-41355-2
  • Shannon P, 2003, GENOME RES, V13, P2498, DOI 10.1101/gr.1239303
  • Song J, 2013, J IMMUNOL, V190, P401, DOI 10.4049/jimmunol.1202286
  • Stebbing J, 2020, LANCET INFECT DIS, V20, P400, DOI 10.1016/S1473-3099(20)30132-8
  • Szklarczyk D, 2015, NUCLEIC ACIDS RES, V43, pD447, DOI 10.1093/nar/gku1003
  • Thiele I, 2013, NAT BIOTECHNOL, V31, P419, DOI 10.1038/nbt.2488
  • Tisoncik JR, 2012, MICROBIOL MOL BIOL R, V76, P16, DOI 10.1128/MMBR.05015-11
  • Tufan A, 2020, TURK J MED SCI, V50, P620, DOI 10.3906/sag-2004-168
  • van Zoelen MA, 2011, CRIT CARE, V15, DOI 10.1186/cc9990
  • Wang ML, 2020, CELL RES, V30, P269, DOI 10.1038/s41422-020-0282-0
  • Wang PH, 2008, J VIROL, V82, P8978, DOI 10.1128/JVI.00314-08
  • Wishart DS, 2008, NUCLEIC ACIDS RES, V36, pD901, DOI 10.1093/nar/gkm958
  • Xie XJ, 2019, ISCIENCE, V19, P872, DOI 10.1016/j.isci.2019.08.044
  • Yang CM, 2012, J NEUROINFLAMM, V9, DOI 10.1186/1742-2094-9-12
  • Ye Q, 2020, J INFECTION, V80, P607, DOI 10.1016/j.jinf.2020.03.037
  • Yoshizaki T, 1998, P NATL ACAD SCI USA, V95, P3621, DOI 10.1073/pnas.95.7.3621
  • Yu GC, 2012, OMICS, V16, P284, DOI 10.1089/omi.2011.0118
  • Zhang C, 2020, INT J ANTIMICROB AG, V55, DOI 10.1016/j.ijantimicag.2020.105954
  • Zhang TT, 2017, MED ONCOL, V34, DOI 10.1007/s12032-017-0988-0
  • Zhu N, 2020, NEW ENGL J MED, V382, P727, DOI 10.1056/NEJMoa2001017
  • Zou X, 2020, FRONT MED-PRC, V14, P185, DOI 10.1007/s11684-020-0754-0