Increase of the $alpha$-amylase yield by some Bacillus strains

Bacillis suslarından a-amilaz enziminin yüksek verimde elde etmek için yeni bir ortam gelistirildi. Bu ortamda üç Bacillus susu farklı karbon, azot ve metal kaynakları varlıgında üretildi. En yüksek alfaamilaz verimi B. subtilis’te NA-sitrat, B. amyloliquefaciens I’de nisasta, B. amyloliquefaciens II’de ise sukrozlu ortamda elde edildi. Azot kaynagı olarak B. amyloliquefaciens I için amonyum sülfat iyi bir kaynak iken yeast ekstrakt B. subtilis ve B. amyloliquefaciens II için enzim bakımından verimli bulundu. Hiç bir metal iyonu tüm susların enzim aktivitesini arttırmadı. Diger yandan enzim aktivitesinde az bir artıs oksijen konsantrasyonunun arttırılması ile sagladı. a-amilaz için tüm suslarda optimum sıcaklık 55°C’dir, B. subtilis için optimum pH 7, B. amyloliquefaciens’in her iki susu için ise 5.9 olarak bulundu. Enzimin düsük ya da yüksek pH degerlerinde ve yüksek sıcaklıkta stabil olmadıgı saptandı. Ag, Zn ve Cu’nun tüm suslarda güçlü olarak inhibitör etki gösterdigi gözlenmistir. Çalısmada kullanılan tüm suslardan elde edilen amilazların nisasta ile inkübasyonlarından sonra yapılan Ince Tabaka Kromatografileri ile nisastanın son ürünleri olarak az miktarda glukoz ve bir miktar maltoz saptanmıstır.

Bazı Bacillus suşlarında $alpha$-amilaz veriminin arttırılması

In order to obtain high amounts of a-amylase enzyme from Bacillus bacteria a new medium was developed. In this medium, three strains of Bacillus bacteria were grown in the presence of different carbon, nitrogen and metal ions. The highest $alpha$-amylase yield was obtained by addition of Na-citrate, strach and sucrose for the strains of B. subtilis, B. amyloliquefaciens I and B. amyloliquefaciens II, respectively. As a nitrogen source, yeast extract was found to be effective on enzyme yield for B. subtilis and B. amyloliquefaciens II, while ammonium sulfate was found to be effective for B. amyloliquefaciens I. None of the metal ions increased the enzyme activity of all the strains. However, a slight increase was determined by increase of oxygen concentration. The optimum temperature of each bacteria for $alpha$-amylase was 55°C. The optimum pH of the B. subtilis enzyme was 7.0, while for both strains of B. amyloliquefaciens the optimum pH was 5.9. Enzymes were not stable at elevated temperatures and at low or high pH values. Inhibitory effects of Ag, Zn and Cu were observed in all Bacillus strains. Maltose and a small amount of glucose were determined as the split products of starch by thin layer chromatography (TLC) after incubation of starch with amylases of all the strains used in this study.

___

  • 1. Uhling, H., Industial enzymes and their applications. John Wiley & Sons. Inc., NewYork. 1998.
  • 2. Yamamoto, T., Enzyme chemistry and molecular biology of amylases and related enzymes. CRC press, Tokyo. 1995.
  • 3. Pazlarova, J., Baig, M.A., Votruba, J., Kinetics of a-amylase production in a batch and fed-batch culture of B. subtilis with caseinate as nitrogen source and starch as carbon source., Appl. Microbiol. Biotech., 20: 301-334, 1984.
  • 4. Fogarty, W.M., Microbial enzymes and biotechnology Chapter 1 Microbial amylases. Applied Science Publisher, pp: 1-92, 1983.
  • 5. Gurgun, V., Undersuchungen uber den anaeroben Dunkel Stoff weehsel einiger arter de phototrophen purpur bacterien., PhD thesis Gottingen-Germany, 1974.
  • 6. Yoo, Y.J., Hong, J., Hatch, R.T., Comparison of a-amylase activities from different assay., Biotech. Method., Bioengn., vol: xxx, 147-151, 1987.
  • 7. Bezbaruah, R.L., Gogoi, R.K., Pillai, K.R., Nigam, J.N., Amylase production by three Bacillus strains active at alkaline pH., J. Basic. Microbiol., 31: 13-20, 1991.
  • 8. Priest, F.G., Extracellular enzyme synthesis in the genus Bacillus. Bacterial Rev., 41 (3): 711-735, 1977.
  • 9. Tonkova, A., Effect of glucose and citrate on a-amylase production in B. licheniformis., J. Basic Microbiol., 31: 217-222, 1991.
  • 10. Jamuna, R., Ramakrishna, S.V., Continuous synthesis of thermostable a-amylase by Bacillus cells immobilized in calcium alginate. Enzyme Microbiol. Techn. 14: 36-41, 1992.
  • 11. Fang, A., Demain, A.L., A new chemicaly-defined medium for RAC-certified strains of B. subtilis., Appl. Microbiol. Biotech. 30: 144-147, 1989.
  • 12. Jin, F., Cheng, X., Shi, Y., Zhang, C., Isolation of new thermophilic aerobic bacteria which produce thermostable a-amylase., J. Gen. Appl. Microbiol. 36: 415-424, 1990.
  • 13. Coleman, G., Elliott, W.H., Studies on a-amylase formation by Bacillus subtilis., Biochem. J., 83: 256-263, 1962.
  • 14. Mai, N.T., Giang, D.T., Minh, N.T.N., Thao, V.T., Thermophilic amylase producingbacteria from Vietnamese soils., World J. Microbiol. Biotech., 8: 505-508, 1992.
  • 15. Kadrekar, S.N., Ramasarma, G.B., Amylase and protease production by B. subtilis: Studies on improvement of strain and medium., J. Fd. Sci. Technol., 27: 4-6, 1990.
  • 16. Manning, G.B., Campbell, L.L., Thermostable a-amylase of B. stearothermophilus., J. Biol. Chem., 236: 2952- 2957, 1961.
  • 17. Hamada, N., Fukumoto, J., Yamamoto, T., Glycosyl glycerophorsphoric acid and its polymer excreted by a- amylase-forming B. subtilis., Agric. Biol. Chem. 35: 1052-1060, 1971.
  • 18. Deshpande, S.S. and Cheryan, M., Effects of phytic acid, divalent cation and their interactions on a-amylase activity., J. Food Sci., 49: 516-519, 1984.
  • 19. Kadziola, A., Abe, J.I., Svensson, B., Haser, R., Crystal structure of barley a-amylase., J. Mol. Biol., 239: 104- 121, 1994.
  • 20. Larson, S.B., Greenwood, A., Cascio, D., Day, J., McPherson, A., Refined molecular structure of pig prancreatic a-amylase at 2.1Å resolution., J. Mol. Biol., 235: 1560-1584, 1994.
  • 21. Ishizaki, A., Ikeda, S., Shibai, H. and Hirose, Y., Influence of carbondioxide patrial pressure on pH in submerged cultures., Agric. Bio. Chem., 50 (3): 599-605, 1986.
  • 22. Vihinen, M., Mäntsälä, P., Characterization of a thermostable B. stearothermophilus a-amylase, Biotech. Appl. Biochem., 12: 427-435, 1990.
  • 23. Cordt, S., Hendrickx, M., Maesmans, G., Tobback, P., The Influence of polyalcohols and carbohydrates on the thermostability of a-amylase. Biotech. Bioengin., 43: 107-11, 1994.
  • 24. Dobreva, E., Ivanova, V., Emanuilova, E., Effect of temperature on some characteristics of the thermostabile a- amylase from B. licheniformis., World J. Microb. Biotech., 10: 547-550, 1994.
  • 25. Kanno, M., A B. acidocaldorius a-amylase that is highly stable to heat under acidic conditions. Agric. Biol. Chem., 50: 23-31, 1986.
  • 26. Takasaki, Y., An amylase producing maltotriose from B. subtilis., Agric. Biol. Chem., 49: 1091-1097. 1985.