Effect of nutrient media and initial biomass on growth rate and nutrient uptake of Sargassum spinuligerum (Sargassaceae, Phaeophyta)

Effect of nutrient media and initial biomass on growth rate and nutrient uptake of Sargassum spinuligerum (Sargassaceae, Phaeophyta)

The Sargassum species are prospective candidates for marine culture, but there are a limited number of reports on their nutrient requirements and optimum initial stocking biomass, and nothing is published for Sargassum spinuligerum. This study investigated the effects of three commercially available fertilizers (Hortico, Seasol, and Aquasol)and four initial stocking biomass levels of S. spinuligerum on the growth rate and nutrient uptake capacities for 7 weeks. The results showed that S. spinuligerum could be grown under outdoor conditions with the optimum initial stocking biomass of 15.35 g per 113 L. The different commercial fertilizers significantly influenced the specific growth rate and nutrient uptake rate of S. spinuligerum. Aquasol resulted in a higher specific growth rate than the other commercial fertilizers, with the relative growth rate fluctuating between 0.42 and 1.70 (% per day). Aquasol is recommended as a nutrient supplement to enhance the specific growth rate of S. spinuligerum.

___

  • Costa JC, Oliveira JV, Pereira MA, Alves MM, Abreu AA (2015). Biohythane production from marine macroalgae Sargassum sp. coupling dark fermentation and anaerobic digestion. Bioresource Technolog 190: 251-256.
  • Chow F, Macchiavello J, Santa CS, Fonck E, Olivares J (2001). Utilization of Gracilaria chilensis (Rhodophyta: Gracilariaceae) as a biofilter in the depuration of effluents from tank cultures of fish, oysters, and sea urchins. J World Aquac Soc 32: 215-220.
  • Fan X, Xu D, Wang Y, Zhang X, Cao S, Mou S, Ye N (2014). The effect of nutrient concentrations, nutrient ratios and temperature on photosynthesis and nutrient uptake by Ulva prolifera: implications for the explosion in green tides. J Appl Phycol 26: 537-544.
  • FAO (2012). The state of world fisheries and aquaculture. Rome, Italy: FAO Fisheries and Aquaculture Department. FAO (2014). The state of world fisheries and aquaculture ‒ Opportunities and challenges. Rome, Italy: FAO Fisheries and Aquaculture Department .
  • Friedlander M, Ben-Amotz A (1991). The effect of outdoor culture conditions on growth and epiphytes of Gracilaria conferta. Aqua Bot 39: 315-333.
  • Gao K, Hua W (1997). In situ growth rates of Sargassum horneri (Fucales, Phaeophyta). Phycol Res 45: 55-57.
  • Guimaraens M (1999). The influence of environmental factors on the seasonal dynamics of Ulva sp. and Sargassum sp. in the Cabo Frio upwelling region of Brazil. PhD, University of Miami, Miami, FL, USA.
  • Guiry MD, Guiry GM (2014). AlgaeBase. National University of Ireland, Galway http://www.algaebase.org. Accessed 29 September 2014.
  • Hanisak MD, Samuel M (1987). Growth rates in culture of several species of Sargassum from Florida, USA. Hydrobiologia 151- 152: 399-404.
  • Hanson RB (1977). Pelagic Sargassum community metabolism: Carbon and nitrogen. J Exper Mar Bio Eco 29: 107-118.
  • Huisman JM, Walker DI (1990). A catalogue of the marine plants of Rottnest Island, Western Australia, with notes on their distribution and biogeography. Kingia 1: 349-459.
  • Mai H, Fotedar R, Fewtrell J (2010). Evaluation of Sargassum sp. as a nutrient-sink in an integrated seaweed-prawn (ISP) culture system. Aquaculture 310: 91-98.
  • Israel A, Katz S, Dubinsky Z, Merrill J, Friedlander M (1999). Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhodophyta). J Appl Phycol 11: 447-453.
  • Muñoz J, Kumar V, Fotedar R (2011). Seaweed culture with special reference to Latin America. In: Fotedar R, Phillips B, editors. Recent Advances and New Species in Aquaculture. Melbourne, VIC, Australia: Wiley-Blackwell, pp. 252-276.
  • Kamer K, Fong P (2001). Nitrogen enrichment ameliorates the negative effects of reduced salinity on the green macroalga Enteromorpha intestinalis. Mar Ecol Prog Ser 218: 87-93.
  • Keusgen M, Glombitza KW (1997). Pseudofuhalols from the brown alga Sargassum spinuligerum. Phytochemistry 46: 1403-1415.
  • Kumar V, Fotedar R, Longbottom S (2011). Effect of nutrient media on the growth, physicochemical and agar properties of Gracilaria cliftonii cultured in ocean and inland saline water. J Appl Aqua 23: 317-328.
  • Liu D, Keesing JK, Dong Z, Zhen Y, Di B, Shi Y, Fearns P, Shi P (2010). Recurrence of the world’s largest green-tide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms. Mar Pol Bul 60: 1423-1432.
  • Marinho-Soriano E, Morales C, Moreira WC (2002). Cultivation of Gracilaria (Rhodophyta) in shrimp pond effluents in Brazil. Aquacult Res 33: 1081-1086.
  • Marinho-Soriano E, Nunes SO, Carneiro MAA, Pereira DC (2009). Nutrients’ removal from aquaculture wastewater using the macroalgae Gracilaria birdiae. Biomass Bioenerg 33: 327-331.
  • Muñoz J, Fotedar R (2010). Epiphytism of Gracilaria cliftonii (Withell, Millar & Kraft) from Western Australia. J Appl Phycol 22: 371- 379.
  • Murase NO, Kito HI, Mizukami YU, Maegawa MI (2000). Productivity of a Sargassum macrocarpum (Fucales, Phaeophyta) population in Fukawa Bay, Sea of Japan. Fis Sci 66: 270-277.
  • Oliveira JV, Alves MM, Costa JC (2015). Optimization of biogas production from Sargassum sp. using a design of experiments to assess the co-digestion with glycerol and waste frying oil. Bioresource Technol 175: 480-485.
  • Pang S, Liu F, Shan T, Gao S, Zhang Z (2009). Cultivation of the brown alga Sargassum horneri: sexual reproduction and seedling production in tank culture under reduced solar irradiance in ambient temperature. J Appl Phycol 21: 413-422.
  • Pedersen MF, Borum J (1996). Nutrient control of algal growth in estuarine waters - Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Mar Ecol Prog Ser 142: 261-272.
  • Pickering TD, Sladden VH, Furneaux RH, Hemmingson JA, Redfearn P (1993). Comparison of growth rate in culture, dry matter content, agar content and agar quality of two New Zealand red seaweeds, Gracilaria chilensis Bird, McLachlanet Oliveira and Gracilaria truncata Kraft. J Appl Phycol 5: 85-91.
  • Ryther JH, Corwin N, DeBusk TA, Williams LD (1981). Nitrogen uptake and storage by the red alga Gracilaria tikvahiae (McLachlan, 1979). Aquaculture 26: 107-115.
  • Schaffelke B, Klumpp DW (1998). Nutrient-limited growth of the coral reef macroalga Sargassum baccularia and experimental growth enhancement by nutrient addition in continuous flow culture. Mar Ecol Prog Ser 164: 199-410.
  • Shao P, Liu J, Chen X, Fang Z, Sun P (2015). Structural features and antitumor activity of a purified polysaccharide extracted from Sargassum horneri. Int J Biol Macromol 73: 124-130.
  • Soto M, Vázquez MA, de Vega A, Vilariño JM, Fernández G, de Vicente MES (2015). Methane potential and anaerobic treatment feasibility of Sargassum muticum. Bioresource Technolog 189: 53-61.
  • Terasaki M, Chikara K, Atsushi I, Hiroko K, Bhaskar N, Masashi H, Kazuo M (2016). Spatial and seasonal variations in the biofunctional lipid substances (fucoxanthin and fucosterol) of the laboratory-grown edible Japanese seaweed (Sargassum horneri Turner) cultured in the open sea. Saudi J Biol Sci doi: 10.1016/j.sjbs.2016.01.009 (in press).
  • Tin CH, Anthony JC, Ravi KF, Michael JO, Michael WL, Shovonlal R (2016). Seasonal changes in water quality and Sargassum biomass in southwest Australia. Mar Ecol Prog Ser 551: 63-79.
  • Troell M, Halling C, Nilsson A, Buschmann AH, Kautsky N, Kautsky L (1997). Integrated marine cultivation of Gracilaria chilensis (Gracilariales, Bangiophyceae) and salmon cages for reduced environmental impact and increased economic output. Aquaculture 156: 45-61.
  • Tseng CK, Yoshida T, Chiang YM (1985). East Asiatic species of Sargassum subgenus Bactrophycus J. Agardh (Sargassaceae, Fucales), with keys to the sections and species In: Abbott IA, Norris JN, editors. Taxonomy of Economic Seaweeds with Reference to Some Pacific and Caribbean Species. Eureka, CA, USA: California Sea Grant Program, pp. 1-14.
  • Xu Y, Lin J (2008). Effect of temperature, salinity, and light intensity on the growth of the Green macroalga, Chaetomorpha linum. J World Aqua Soc 39: 847-851.
  • Yang H, Zhou Y, Mao Y, Li X, Liu Y, Zhang F (2005). Growth characters and photosynthetic capacity of Gracilaria lemaneiformis as a biofilter in a shellfish farming area in Sanggou Bay, China. J Appl Phycol 17: 199-206.