Characterization of $beta$-xylosidase and $alpha$-L-Arabinofuranosidase activities from Thermomonospora fusca BD25

Termofilik bir aktinomiset olan Thermomonospora fusca BD25, diğer organizmalara oranla daha yüksek seviyede β-ksilozidaz ve α-L-arabinofuranozidaz enzimleri üretmektedir. Bu çalışmada, karbon ve enerji kaynağı olarak yulaf ksileni kullanılan kültür ortamında T. fusca tarafından üretilen β- ksilozidaz ve α-L-arabinofuranozidaz enzimlerinin bazı karakteristik özelliklerinin belirlenmesi amaçlanmıştır. β-ksilozidaz ve α-L-arabinofuranozidaz enzimlerinin spesifik aktivitelerini belirlemek amacı ile yapılan çalışmalarda, substrat olarak sırası ile p-NPX ve p-NPA kullanılmıştır. β-ksilozidaz enziminin spesifik aktivitesi 4,01 U mg-1 protein, α-L-arabinofuranozidaz enziminin spesifik aktivitesi ise 0,35 U mg-1 protein olarak saptanmıştır. β-ksilozidaz ve α-L-arabinofuranozidaz enzimleri için optimum sıcaklıklar ise sırası ile 65 °C ve 55 °C olarak tesbit edilmiştir. β-ksilozidaz ve α-L- arabinofuranozidaz enzimleri (substrat yokluğunda ve pH 7’de) 50 °C’ta 9 saat süre ile inkübe edildikten sonra sırası ile aktivitelerinin % 86 ve % 83 ünü korudukları saptanmıştır. β-ksilozidaz pH 4,5 ile 10 arasında ise, pH 8’de göstermiş olduğu maksimum aktivitenin % 50 sini göstermiştir. α-L- arabinofuranozidaz ise pH 4,5 ile 11 arasında, pH 9’de göstermiş olduğu maksimum aktivitenin % 54-55 ini göstermiştir. β-ksilozidaz ve α-L-arabinofuranozidaz için substrat olarak sırası ile p-NPX ve p- NPA kullanıldığında görünür Km değerleri 0,5 mM ve 0,18 mM olarak tesbit edilirken, Vmax değerleri 0,83 µmol ml -1 dak-1 ve 0,04 µmol ml -1 dak-1 olarak tesbit edilmiştir. Son ürün inhibitörü olarak D- ksilozun (10 mM) β-ksilozidaz enziminin reaksiyon ortamına ilavesi ise enzimin aktivitesinde yaklaşık olarak % 10 azalmaya neden olduğu saptanırken α-L-arabinofuranozidazın L-arabinoz (10 mM) tarafından %15 oranında inhibe edildiği saptanmıştır.

Thermomonospora fusca bd25' ten elde edilen $beta$-Ksilozidaz ve $alpha$-L- Arabinofuranozidaz aktivitelerinin karakterizasyonları

Thermomonospora fuscaBD25 produces relatively high levels of activity of $beta$-xylosidase and $alpha$-L-arabinofuranosidase. The aim of the work described in this study was to characterize some properties of $beta$-xylosidase and $alpha$ -L-arabinofuranosidase produced by T. fusca BD25 when growing on oat spelt xylan as the main carbon and energy sources. The substrates p-NPX and p-NPA reacted with b-xylosidase and $alpha$-L-arabinofuranosidase with specific activities of 4.01 U $mg^{ -1}$ protein and 0.35 U $mg^{ -1}$ protein, respectively. The b-xylosidase remained stable at up to 65 °C, but $alpha$-L-arabinofuranosidase lost 10 % of its maximum activity at 55 °C. $beta$-xylosidase and a-L-arabinofuranosidase activities remained at 86 % and 83 % of their maximum activities after 9 h of incubation at 50 °C. The maximum relative b-xylosidase activit occurred (0.82 U $mg^{ -1}$ protein) at pH 8.0 with a 50 % decrease of maximum relative activity occurring at pH 4.5 and 10. $alpha$-L-arabinofuranosidase exhibited maximum relative activity (0.136 U mg -1 protein) at pH 9.0 with 54 % and 55 % activities remaining at pH of 4.5 and 11, respectively. The apparent $K_ m$ values for the crude b-xylosidase and $alpha$-L-arabinofuranosidase preparations were 0.5 mM of p-NPX and 0.18 mM of p-NPA, while the $V_{ max}$ values were 0.83 $mu$mol p-nitrophenol $ml^{ -1}$ $min^{ -1}$ and 0.04 mmol p-nitrophenol $ml^{ -1}$ $min^{ -1}$ , respectively. The addition of D-xylose (10 mM) to the reaction mixture caused a 10 % reduction in $beta$-xylosidase activity as the end-product inhibitor. However, a 15 % reduction in $alpha$-L-arabinofuranosidase activity was detected when L-arabinose (10 mM) was added to the reaction mixture.

___

  • 1. Betts, W.B., Dart, R.K., Ball, A.S. & Pedlar, S.L. Biosynthesis and structure of lignocellulose. In: Biodegradation, Natural and Synthetic Materials. (Betts, W.B. ed.). London; 1992, Springer-Verlag, pp. 139-156.
  • 2. Whistler, R.L. & Richards, E.L. Hemicellulose. In: The Carbohydrates. Chemistry and Biochemistry. 2nd edition. Vol. 2A (Eds. Pigman, W. and Horton, D.). New York. 1970, Academic Press. pp. 447-469.
  • 3. Dekker, R.F.H. & Richards, G.N. Hemicellulases: Their occurrence, purification, properties and mode of action. Adv. Carbohydr. Chem. Biochem. 32; 277-352. 1976.
  • 4. Barry, V.C. & Dillon, T. The occurrence of xylan in marine algae. Nature, 146; 620. London. 1940.
  • 5. Kato, Y. & Nevins, D. Enzymic dissociation of zea shoot cell wall polysaccharides: (III)purification and partial characterization of an endo-(1,4)β-D-xylanase from a Bacillus subtilis enzyme preparation. Plant Physiol. 75; 753- 758. 1984.
  • 6. Joseleau, J.P., Comtat, J. & Ruel, K. Chemical structure of xylans and their interaction in the plant cell walls. In: Xylans and Xylanases. (Eds. Visser, J., Beldman,G., Kusters-van-Someren, M.A. and Varagen, A.G.J.) Amsterdam, London, New York.,Tokyo 1992. Elsevier. pp. 1-15.
  • 7. Eriksson, K.-E.L., Blanchette, R.A. & Ander, P. Biodegradation of cellulose. In: Microbial and Enzymatic Degradation of Wood and Wood Components. Heidelberg. 1990. Springer-Verlag.
  • 8. Coughlan, M.P. & Hazlewood, G.P. β-1,4-D-xylan degrading enzyme systems: Biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17; 259-289. 1993.
  • 9. Thomson, J.A. Molecular biology of xylan degradation. FEMS Microbiol. Rev. 104; 65-82. 1993.
  • 10. McCarthy, A.J. Lignocellulose degrading actinomycetes. FEMS Microbiol. Rev. 46; 145-163. 1987.
  • 11. Wong, K.K., Tan, L.U.L. & Saddler, J.N. Multiplicity of β-1,4-xylanase in microorganisms: Function and Applications. Microbiol. Rev. 52; 305-317. 1988.
  • 12. Ball, A.S. & McCarthy, A.J. Production and properties of xylanases from actinomycetes. J. Appl. Bacteriol. 66; 439- 444. 1989.
  • 13. Tuncer, M., Rob, A., Ball, A.S., & Wilson, M.T. Optimisation of extracellular lignocellulolytic enzyme production by a thermophilic actinomycete Thermomonospora fusca BD25. Enzyme & Microbial Technol. 22; - , - . (in press) 2000.
  • 14. Tuncer, M. A study of the enzymology of lignocellulose degradation by Thermomonospora fusca BD25. Ph.D. Thesis. University of Essex. UK. 1999.
  • 15. Tuncer, M. Rob, A., Ball, A.S., Eady, R.R., Henderson, N. & Wilson, M.T. Optimization of production of extracellular non-haem peroxidases by Thermomonospora fusca BD25 in aerobic bio-reactor conditions. Biochem. Soc. Transac. 25; S 65. 1997.
  • 16. Bachmann, S.L. & McCarthy A.J. Purification and characterisation of a thermostable β-Xylosidase from Thermomonospora fusca. J. Gen. Microbiol. 135; 293-299. 1989.
  • 17. MacKenzie, C.R., Bilous, D., Schnieder, H. and Johnson, K. G. Induction of cellulolytic and xylanolytic enzyme systems in Streptomyces spp. Appl. Environ. Microbiol. 53;2835-2839. 1987.
  • 18. Johnson, W.C. & Lindsey, A.J. An improved universal buffer. Analyst. 64; 958-993. 1939.
  • 19. Ristroph, D.L. & Humphrey, A.E. Kinetic characterisation of the extracellular xylanases of Thermomonospora sp. Biotechnol. & Bioengin. 27; 832-836. 1985.
  • 20. Ristroph, D.L. & Humphrey, A.E. The β-xylosidase of Thermomonospora. Biotechnol. Bioengin. 27; 909-913. 1985.
  • 21. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London. 227; 680-685. 1970.
  • 22. Deleyn, F., Claeyssens, M., Van Beelmen, J. & de Bruynde, K. Purification and properties of β-xylosidase from Penicillium wortmanni. Can. J. Biocehem. 56; 43-50. 1978.
  • 23. Uziie, M., Matsuo, M. & Yasui, T. Possible identify of β-xylosidase and β-glucosidase of Chaetomium trilaterale. Agri. Biol. Chem. 49; 1167-1173. 1985.
  • 24. Stutzenberger, F. J. & Bodine, A.B. Thermostable β-xylosidase from Thermomonospora curvata. J. Indust. Microbiol. & Biotechnol. 20; 55-60. 1998.
  • 25. Flores, M.E., Pérez, R. & Huitrón, C. β-xylosidase and xylanase characterization and production by Streptomyces sp. CH-M-1035. Lett. Appl. Microbiol. 24; 410-416. 1997.
  • 26. Claeyssens, M., Saman, M., Kersters-Hilderson, H. & de Bruyne, C.K. β-D-xylosidase from Bacillus pumilus: molecular properties and oligomeric structure. Biochemica et Biophysica Acta. 405; 475-481. 1975.
  • 27. Deshpande, V. Lachke, A., Misra, C., Keskar, S. & Rao, M. Mode of action and properties of xylanase and βxylosidase from Neurospora crassa. Biotechnol. Bioeng. 28; 1832-1837. 1986.
  • 28. Wood, T.M. & McCrae, S.I. Arabinoxylan-degrading enzyme-system of the fungus Aspergillus awamori: purification and properties of an α-L-arabinofuranosidase. Appl. Microbiol. Biotechnol. 45; 538-545. 1996.
  • 29. Kaji, A., Sato, M. & Tsutsui, Y. An a-L-arabinofuranosidase produced by wild-type Strptomyces sp. 17-1. Agric. Biol. Chem. 45; 925-931. 1981.
  • 30. Schwarz, W.H., Bronnenmeier, K., Krause, B., Lottspeich, F. & Staudenbauer, W. I. Debranching of arabinoxylan: properties of the thermoactive recombinant α-L-arabinofuranosidase from Clostridium stercorarium (arfb). Appl. Microbiol. Biotechnol. 43; 856-860. 1995.
  • 31. John, M., Schmidt, B. & Schmidt, J. Purification and some properties of five endo-1,4-β-xylanases and β-Dxylosidase produced by a strain of Aspergillus niger. Can. J. Biochem. 57; 124-134. 1979.
  • 32. Bachmann, S.L. & McCarthy, A.J. Purification and co-operative activity of enzymes constituting the xylandegrading system of Thermomonospora fusca. Appl. Environ. Microbiol. 57; 2121-2130. 1991.
  • 33. Volkin, D.B. & Klibanov, A.M. Minimizing protein inactivation. In: Protein function, a practical approach. (Ed. Creighton, T.E. ), Oxford. 1989. IRL Press. pp. 1-24.
  • 34. Ghangas, G.S. & Wilson, D.B. Cloning of the Thermomonospora fusca endoglucanase E2 gene in Streptomyces lividans:Affinity purification and functional domains of the cloned gene product. Appl. Environ. Microbiol. 54; 2521-2526. 1988.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK