Increased ribonuclease activity in Solanum tuberosum L. transformed with heterologous genes of apoplastic ribonucleases as a putative approach for production of virus resistant plants

Viral pathogens seriously decrease the yield of potato (Solanum tuberosum L.) –an important agricultural crop. Therefore, there is a demand for potato cultivars resistant to multiple viruses. Ribonucleases (RNases) are supposed to be engaged to antiviral response in plants. Heterologous RNase gene expression provides a tool for production of cultivars with multiple resistance to viruses and viroids. Transgenic potato cultivars Luhivs’ka and Lasynak with heterologous genes bov and ZRNase II of apoplastic RNases from Bos taurus and Zinnia elegans respectively were obtained via Agrobacterium-mediated transformation. The presence of bov and ZRNase II transgenes was confirmed by PCR analysis. RNase activity was examined by modified Oleshko method. Plants with heterologous ribonuclease genes had higher level of RNase activity compared to nontransgenic ones. Transgenic plants inoculated with Potato virus Y, PVY (genus Potyvirus, family Potyviridae) demonstrated delayed and less severe symptoms of viral infection. DAS-ELISA confirmed the presence of viral antigens both in transformed and control plants. Visual manifestations of viral infection in transgenic potatoes were milder than in control plants and their development was delayed, but complete elimination of the virus did not occur.

___

  • Aseel D. G., 2015, J VIROLOGICAL ANTIVI, V4, P1, DOI [10.4172/2324-8955.1000145, DOI 10.4172/2324-8955.1000145]
  • Beaujean A, 1998, J EXP BOT, V49, P1589, DOI 10.1093/jexbot/49.326.1589
  • Blanchard A, 2008, CURR TOPICS VIROL, V7, P21
  • Boquel S, 2015, PEST MANAG SCI, V71, P1106, DOI 10.1002/ps.3892
  • Budzanivska I, 2014, PHYLOGENETIC ANAL RN
  • Budzanivska I. G., 2014, Biopolymers and Cell, V30, P141, DOI 10.7124/bc.00088D
  • Cao XL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0060829
  • Dalakouras A, 2015, VIRUSES-BASEL, V7, P634, DOI 10.3390/v7020634
  • Dupuis B, 2017, PLANT PATHOL, V66, P960, DOI 10.1111/ppa.12698
  • El-Absawy E. A., 2012, International Journal of Virology, V8, P81, DOI 10.3923/ijv.2012.81.89
  • Hussain Altaf, 2016, Journal of Entomology and Zoology Studies, V4, P189
  • Karasev AV, 2013, ANNU REV PHYTOPATHOL, V51, P571, DOI 10.1146/annurev-phyto-082712-102332
  • Kochetov A, 2017, RUSSIAN J GENETICS A, V7, P421, DOI 10.1134/S2079059717040050.
  • Loebenstein G, 2012, ADV VIRUS RES, V84, P209, DOI 10.1016/B978-0-12-394314-9.00006-3
  • Milosevic S, 2013, SCI HORTIC-AMSTERDAM, V164, P499, DOI 10.1016/j.scienta.2013.10.015
  • Ogawa T, 2005, BREEDING SCI, V55, P49, DOI 10.1270/jsbbs.55.49
  • Ohno Hiroshi, 2005, Tohoku Journal of Agricultural Research, V55, P99
  • Oleshko P, 1981, UKRAINIAN BIOCH J, V26, P2144
  • Perring TM, 1999, ANNU REV ENTOMOL, V44, P457, DOI 10.1146/annurev.ento.44.1.457
  • Quenouille J, 2013, MOL PLANT PATHOL, V14, P439, DOI 10.1111/mpp.12024
  • Raines RT, 1998, CHEM REV, V98, P1045, DOI 10.1021/cr960427h
  • Sambrook J, 1989, MOL CLONING LAB MANU, DOI [10.1002/jobm.3620300824, DOI 10.1002/JOBM.3620300824]
  • Sangaev SS, 2007, RUSS J GENET+, V43, P831, DOI 10.1134/S1022795407070186
  • Sangaev SS, 2011, RUSS J GENET APPL RE, V1, P44, DOI [10.1134/S2079059711010060, DOI 10.1134/S2079059711010060]
  • Sano T, 1997, NAT BIOTECHNOL, V15, P1290, DOI 10.1038/nbt1197-1290
  • Sugawara T, 2016, BMC PLANT BIOL, V16, DOI 10.1186/s12870-016-0928-8
  • Trifonova EA, 2012, BIOL PLANTARUM, V56, P571, DOI 10.1007/s10535-011-0206-4
  • Trifonova EA, 2007, PLANT CELL REP, V26, P1121, DOI 10.1007/s00299-006-0298-z
  • WATANABE Y, 1995, FEBS LETT, V372, P165, DOI 10.1016/0014-5793(95)00901-K
  • Yang XD, 2019, TRANSGENIC RES, V28, P129, DOI 10.1007/s11248-018-0108-8
  • Ye ZH, 1996, PLANT MOL BIOL, V30, P697, DOI 10.1007/BF00019005
  • Zhang LY, 2001, TRANSGENIC RES, V10, P13, DOI 10.1023/A:1008931706679