Needle characteristics of Lebanon cedar (Cedrus libani A.Rich.): degradation of epicuticular waxes and decrease of photosynthetic rates with increasing needle age

Needle characteristics of Lebanon cedar (Cedrus libani A.Rich.): degradation of epicuticular waxes and decrease of photosynthetic rates with increasing needle age

The evergreen conifer Cedrus libani A.Rich. is frost- and drought-tolerant and of economic and ecological importance. It has valuable timber and thus has promising potential for cultivation within and outside its natural distribution. Our aim was to determine the morphological and physiological characteristics of C. libani needle leaves with respect to epicuticular waxes, photosynthetic assimilation rates, and needle age. The study was conducted in the Cedar Research Forest near Elmalı, Antalya (SW Turkey) at 1650 m a.s.l. An equation to calculate needle surface area from needle length was created (R2= 0.96) for adult cedar needles. The form factor for total needle surface area to projected needle surface area was 3.248. The epicuticular wax morphology using scanning electron microscopy showed that the rhomboidal needles of C. libani possess a dense and intact network of tubular wax crystals, which is common in the family Pinaceae. Wax crystals were found on all sites of the needles and were especially dominant on epistomatal cavities. Wax degradation started in 1-year-old needles and increased with advancing age. The degree of wax degradation gave no indication of significant stress or damage at the study site (e.g., air pollution, extreme drought events). Gas exchange properties were derived from light response and A/cicurves measured in situ in 1-year-old and 2-year-old needles of mature C. libani trees. Compared to 1-year-old needles, net carbon assimilation rates decreased by about 25% in 2-year-old needles. Assimilation rates and respiration rates were comparable with other conifers, showing no signs of significant stress with needle age. The aging of needles affected both the epicuticular wax structures and the photosynthetic performance. It remains to be clarified to what degree wax degradation influences the decrease of photosynthesis in cedar needles.

___

  • Atalay I (1987). General ecological properties of natural occurrence areas of cedar (Cedrus libani A. Rich) forests and regioning of seed transfer of cedar in Turkey. Ankara, Turkey: Orman Genel Müdürlügü (in Turkish with English summary).
  • Atalay I (2002). Mountain ecosystems of Turkey. In: Proceedings of the 7th International Symposium on High Mountain Remote Sensing Cartography, pp. 15-26.
  • Awada T, Radoglou K, Fotelli MN, Contantinidou HIA (2003). Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes. Tree Physiol 23: 33-41.
  • Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998). Classification and terminology of plant epicuticular waxes. Bot J Linn Soc 126: 237-260.
  • Basaran MA, Basaran S, Bas N, Kaçar S, Tolunay D, Makineci E, Kavgaci A, Deniz G (2008). Determining the actual state of Cedar Research Forest Elmali by GIS based digital maps. Antalya, Turkey: South-West Anatolia Forest Research Institute.
  • Blanes MC, Viñegla B, Merino J, Carreira JA (2013). Nutritional status of Abies pinsapo forests along a nitrogen deposition gradient: do C/N/P stoichiometric shifts modify photosynthetic nutrient use efficiency? Oecologia 171: 797-808.
  • Boydak M (2003). Regeneration of Lebanon cedar (Cedrus libani A. Rich.) on karstic lands in Turkey. Forest Ecol Manag 178: 231- 243.
  • Boydak M, Çalıkoğlu M (2008). Biology and Silviculture of Lebanon Cedar (Cedrus libani A.Rich.). Ankara, Turkey: OGEM-VAK. Brooks JR, Jiang L, Ozçelik R (2008). Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon and Cilicica fir in Turkey. Forest Ecol Manag 256: 147-151.
  • Burkhardt J, Pariyar S (2014). Particulate pollutants are capable to ‘degrade’ epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L.). Environ Pollut 184: 659-667.
  • Buschhaus C, Herz H, Jetter R (2007). Chemical composition of the epicuticular and intracuticular wax layers on adaxial sides of Rosa canina leaves. Ann Bot-London 100: 1557-1564.
  • Carus S, Avci M (2005). Growth loss of Lebanon cedar (Cedrus libani) stands as related to periodic outbreaks of the cedar shoot moth (Dichelia cedricola). Phytoparasitica 33: 33-48.
  • Davies CE, Benecke U (1980). Fluidized bed coating of conifer needles with glass beads for determination of leaf surface area. Forest Sci 26: 29-32.
  • Drew A, Running SW (1975). Comparison of two techniques for measuring surface area of conifer needles. Forest Sci 21: 231- 232.
  • Ducci F, Fusaro E, Lucci S, Ricciotti L (2007). Strategies for finalizing conifers experimental tests to the production of improved reproductive materials. In: Proceedings of the International Workshop MEDPINE3 “Conservation, Regeneration and restauration of Mediterranean Pines and their Ecosystems”, pp. 99-104.
  • Ducrey M, Huc R, Ladjal M, Guehl JM (2008). Variability in growth, carbon isotope composition, leaf gas exchange and hydraulic traits in the eastern Mediterranean cedars Cedrus libani and C. brevifolia. Tree Physiol 28: 689-701.
  • Evcimen BS (1963). The economic importance and the management principles of cedar forests in Turkey. Ankara, Turkey: Orman Genel Müdürlügü (in Turkish with English summary).
  • Fady B, Lefèvre F, Reynaud M, Vendramin GG, Dagher-Kharrat MB, Anzidei M, Bariteau M (2003). Gene flow among different taxonomic units: evidence from nuclear and cytoplasmic markers in Cedrus plantation forests. Theor Appl Genet 107: 1132-1138.
  • Fantz PR (2003). A teaching tool: A key to selected gymnosperms. Vulpia 2: 43-64.
  • Güth S (2001). Rasterelektronische und chemische Untersuchungen zur Epicuticularwachs-Sekretion sowie zur EpidermisEntwicklung im Verlauf der Nadel-Ontogenese bei Weißtannen (Abies alba Miller). PhD, Hohenheim University, Berlin, Germany (in German).
  • Haas K, Bauer M, Wollenweber E (2003). Cuticular waxes and flavonol aglycones of mistletoes. Z Naturforsch 58: 464-470.
  • Han Q, Kawasaki T, Nakano T, Chiba Y (2008). Leaf-age effects on seasonal variability in photosynthetic parameters and its relationships with leaf mass per area and leaf nitrogen concentration within a Pinus densiflora crown. Tree Physiol 28: 551-558.
  • Huber G, Storz C (2014). Zedern und Riesenlebensbaum - welche Herkünfte sind bei uns geeignet? LWF-Wissen 74: 63-71 (in German).
  • Jeffree CE, Johnson RPC, Jarvis PG (1971). Epicuticular wax in the stomatal antechamber of Sitka spruce and its effects on the diffusion of water vapour and carbon dioxide. Planta 98: 1-10.
  • Kantarcı MD (1985). Ökologische Untersuchungen in Dibek (Kumluca) und Camkuyusu (Elmali) Zedernwaldern. I.Ü. Orman Fakültesi Dergisi A 35: 19-41 (in Turkish with German summary).
  • Katsuno M, Hozumi K (1987). Needle area measurements by the cut method and estimation of specific leaf area in Cryptomeria japonica. Ecol Res 2: 203-213.
  • Khuri S, Shmoury MR, Baalbaki R, Maunder ME, Talhouk SN (2000). Conservation of the Cedrus libani populations in Lebanon: history, current status and experimental application of somatic embryogenesis. Biodivers Conserv 9: 1261-1273.
  • Koppel A, Heinsoo K (1996). Epicuticular wax structure of Norway spruce (Picea abies) needles in Estonia. Variability in naturally growing and cloned trees. Ann Bot Fenn 33: 265-273.
  • Küppers M (1988). Water vapour and carbon dioxide exchange of leaves as affected by different environmental conditions. Acta Hortic 229: 85-112.
  • Kurt Y, Kaya N, Işık K (2008). Isozyme variation in four natural populations of Cedrus libani A.Rich. in Turkey. Turk J Agric For 32: 137-145.
  • Larcher W (2001). Ökophysiologie der Pflanzen. 6th ed. Stuttgart, Germany: Ulmer (in German).
  • Matyssek R (1985). Der Kohlenstoff-, Wasser- und Nährstoffhaushalt der wechselgrünen und immergrünen Koniferen Lärche, Fichte, Kiefer. PhD, University of Bayreuth, Bayreuth, Germany (in German).
  • Messinger J, Güney A, Zimmermann R, Ganser B, Bachmann M, Remmele S, Aas G (2015). Cedrus libani: A promising tree species for Central European forestry facing climate change? Eur J Forest Res 134: 1005-1017.
  • Oleksyn J, Tjoelker MG, Lorenc-Plucińska G, Konwińska A, Żytkowiak R, Karolewski P, Reich PB (1997). Needle CO2 exchange, structure and defense traits in relation to needle age in Pinus heldreichii Christ–a relict of Tertiary flora. Trees 12: 82-89.
  • Reicosky DA, Hanover JW (1976). Seasonal changes in leaf surface waxes of Picea pungens. Amer J Bot 63: 449-456.
  • Renninger HJ, Meinzer F, Gartner BL (2007). Hydraulic architecture and photosynthetic capacity as constraints on release from suppression in Douglas-fir and western hemlock. Tree Physiol 27: 33-42.
  • Schütt P, Weisberger H, Schuck HJ, Lang UM, Stimm B, Roloff A (2008). Lexikon der Nadelbäume. Hamburg, Germany: Nicol Verlagsgesellschaft (in German).
  • Sellin A (2000). Estimating the needle area from geometric measurements: application of different calculation methods to Norway spruce. Trees 14: 215-222.
  • Singsaas EL, Ort DR, Delucia EH (2001). Variation in measured values of photosynthetic quantum yield in ecophysiological studies. Oecologia 128: 15-23.
  • Sperlich D, Chang CT, Peñuelas J, Gracia C, Sabaté S (2015). Seasonal variability of foliar photosynthetic and morphological traits and drought impacts in a Mediterranean mixed forest. Tree Physiol 35: 501-520.
  • Turunen M, Huttunen S, Percy KE, McLaughlin CK, Lamppu J (1997). Epicuticular wax of subarctic Scots pine needles: response to sulphur and heavy metal deposition. New Phytol 135: 501-515.
  • Wang K, Kellomäki S, Laitinen K (1995). Effects of needle age, longterm temperature and CO2 treatments on the photosynthesis of Scots pine. Tree Physiol 15: 211-218.
  • Wilhelmi H, Barthlott W (1997). Mikromorphologie der Epicuticularwachse und die Systematik der Gymnospermen. Trop Subtrop Pflanzenwelt 96: 1-49 (in German).
  • Willert DJ, Matyssek R, Herppich W (1995). Experimentelle Pflanzenökologie: Grundlagen und Anwendungen. Stuttgart, Germany: Thieme Verlag (in German).
  • Yaman B (2007). Anatomy of Lebanon Cedar (Cedrus libani A.Rich.) wood with indented growth rings. Acta Biol Cravoc Bot 49: 19-23.