Yapraktan Uygulanan Melatonin ve L-Triptofan, Tuz Stresi Altındaki Marulun Büyüme Parametrelerini Nasıl Etkiler?

Bu çalışmanın amacı, dışsal Melatonin (100, 300 ve 500 µM) ve L-trytophan (125, 250, 375 ppm) uygulamalarının, tuz stresi altında yetiştirilen marul bitkilerinin bazı büyüme parametreleri üzerine etkilerini incelemektir. Çalışma ilkbahar sezonunda yarı kontrollü sera koşullarında yürütülmüştür. Bitkilere dışsal uygulamalar yapraktan spreyleme şeklinde iki kez yapılmıştır. Tuz stresi ise sulama suyuna ilave edilen NaCl (0 mM, 100 mM, 200 mM) ile oluşturulmuştur. Çalışma tesadüf parselleri deneme desenine göre üç tekerrürlü olarak yürütülmüştür. Çalışma sonunda, 200 mM tuz stresi koşulunda yetiştirilen bitkilerde yaprak sayısı, tuz nekrozu, yaprak yaş ağırlığı, kök yaş ağırlığı ve toplam yaprak yüzey alanı parametreleri üzerine en yüksek dozdaki dışsal uygulamaların, en yüksek etkiye sahip oldukları anlaşılmıştır. Bu değerler üzerine dışsal uygulamaların etkisi karşılaştırıldığında, melatonin etkisinin daha belirgin olduğu anlaşılmıştır. Yaprak genişliği, yaprak uzunluğu ve yaprak yüzey sıcaklığı değerlerine dışsal uygulamaların herhangi bir etkisi olmamıştır. Bu değerler sadece tuz konsantrasyonuna bağlı olarak değişmiştir. Çalışma sonucunda, 500 µM melatonin uygulamasının marul bitkisinde tuz toleransını önemli ölçüde artırdığı sonucuna varılmıştır. Ancak daha genel bir yargıya varmak için doz aralıklarının ve genotip/çeşit sayısının artırılması gerektiği anlaşılmıştır.

How Do Foliar Application of Melatonin and L-Tryptophan Affect Lettuce Growth Parameters Under Salt Stress?

The aim of this study was to investigate the effects of exogenous Melatonin (100, 300 and 500 µM)and L-tryptophan (125, 250, 375 ppm) applications on some growth parameters of lettuce plantsgrown under salt stress. The study was carried out under semi-controlled greenhouse conditions inspring (March/April) season. The exogenous applications to lettuce plants were carried out two timesas foliar spraying. Salt stress was generated by adding NaCl (0 mM, 100 mM, 200 mM) to irrigationwater. The complete randomized design was used with three replications in this experiment. At theend of the study, it was found that the highest doses of exogenous applications had the highest effecton the parameters of the number of leaves, salinity necrosis, fresh leaf weight, fresh root weight, andtotal surface area of lettuce plants under 200 mM salinity condition. When the effects of the subtracton these values were compared, the effect of melatonin was found to be more pronounced. Leafwidth, leaf length, and leaf surface temperature values were not affected by the external application.These values only changed depending on salt concentration. As a result of the study, it was concludedthat the application of 500 µM melatonin significantly increased salt tolerance in lettuce plants.However, in order to reach a more general conclusion, the dose ranges and genotype/variety numbersshould be increased.

___

  • Abbas SH, Sohail M, Saleem M, Mahmood T, Aziz I, Qamar M, Majeed A, Arif M 2013. Effect of L-tryptophan on plant weight and pod weight in chickpea under rainfed conditions. Sci., Tech. and Dev, 32(4): 277-280.
  • Ahmed S, Ahmed S, Roy SK, Woo SH, Sonawane KD, Shohael AM. 2019. Effect of salinity on the morphological, physiological and biochemical properties of lettuce (Lactuca sativa L.) in Bangladesh. Open Agriculture. 4: 361 –373
  • Ahmad B, Zaid A, Sadiq Y, Bashir S, Wani SH. 2019. Role of Selective Exogenous Elicitors in Plant Responses to Abiotic Stress Tolerance. In Plant Abiotic Stress Tolerance (pp. 273- 290). Springer, Cham.
  • Al-Maskri A, Al-Kharusi L, Al-Miqbali H, Khan MM. 2010. Effects of salinity stress on growth of lettuce (Lactuca sativa) under closed-recycle nutrient film technique, Int. J. Agric. Biol., 12, 377–380
  • Anonymous, 2019. FAO Agricultural Statistical Database. http://faostat.org (Accessed: 20.11.2019)
  • Antony E, Sridhar K, Kumar V. 2017. Effect of chemical sprays and management practices on Brachiaria ruziziensis seed, production. Field Crops Research, 211: 19-26.
  • Ashraf M, Foolad MR. 2007. Roles of Glycine Betaine and Proline in İmproving Plant Abiotic Stress Resistance. Environmental Experimental Botany, 59: 206–216.
  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ. Sobrero, MT. 2006. Seed inoculation with Azospirillum mitigates NaCl effects on lettuce, Sci. Hortic. (Amsterdam), 2006, 109, 8–14
  • Çulha Ş, Çakırlar H. 2012. The Effect of Salinity on Plants and Salt Tolerance Mechanisms. AKU J. Sci,11, 11 -34.
  • Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W. 1995. Melatonin in Edible Plants Identified by Radioimmunoassay and by High Performance Liquid Chromatography Mass Spectrometry. J of Pineal Res, 18 (1): 28-31.
  • Ekbic E, Cagıran C, Korkmaz K, Kose MA, Aras V. 2017. Assessment of watermelon accessions for salt tolerance using stress tolerance indices. Ciência e Agrotecnologia, 41(6), 616-625.
  • Frankenberger W, Arshad M. 1991. Yield response of watermelon and muskmelon to L-tryptophan applied to the soil. Hort Science, 26(1): 35-37.
  • Garrido Y, Tudela JA, Marín A. Mestre T, Martínez V, Gil MI. 2014. Physiological, phytochemical and structural changes of multi‐leaf lettuce caused by salt stress, J Sci Food Agric, 94, 1592–1599
  • Gundy GC, Ralph CL, Wurst GZ. 1976. Parietal Eye in Lizards: Zoogeograsphical Correlates. The Anatomical Record, 190: 671-673.
  • Hattori A, Migitaka H, Masayaki I, Itoh M, Yamamoto K, OhtaniKaneko R, Hara M, Suzuki T, Reiter RJ. 1995. Identification of Melatonin in Plant Seed its Effects on Plasma Melatonin Levels and Binding to Melatonin Receptors in Vertebrates. Biochem Mol Biol Int, 35: 627–634.
  • Kendirli B, Cakmak B, Ucar Y. 2005 Salinity in the Southeastern Anatolia project (GAP), Turkey: Issues and Options. Journal of Irrigation and Drainage Engineering 54(1): 115-122
  • Khan S, Yu H, Li Q, Gao Y, Sallam BS, Wang H, Liu P, Jiang W. 2019. Exogenous Application of Amino Acids Improves the Growth and Yield of Lettuce by Enhancing Photosynthetic Assimilation and Nutrient Availability, Agronomy, 9(5), 266-271
  • Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. 1958. Isolation of Melatonin, the Pineal Factor that Lightness Melanocytes. Journal of American Chemical, Society, 80: 2587-2592.
  • Murch SJ, Saxena PK. 2002. Melatonin: a Potential Regulator of Plant Growth and Development? Invitro Cellular Developmental Biology Plant, 38: 531 –536.
  • Paredes SD, Korkmaz A, Manchester LC, Tan DX, Reiter RJ. 2009. Phytomelatonin: a Review. Journal of Pineal Research, 60: 57-69.
  • Tuteja N. 2007. Mechanisms of High Salinity Tolerance in Plants. Methods in Enzymology, 428, 419-438.
  • Uyanık M, Kara ȘM, Korkmaz K. 2014. Determination of responses of some winter canola (Brassica napus L.) cultivars to salt stress at germination period. Tarim Bilimleri Dergisi, 20(4), 368-375.
  • Xie Y, Sun G, Liao H, Tang Y. 2018. Effects of Exogenous Melatonin on Photosynthetic Physiology of Lettuce Seedlings under Salt Stress, Advances in Engineering Research, volume 162, 81 -84
  • Vural H, Eşiyok D. Duman İ. 2000. Kültür sebzeleri (sebze yetiştirme). Ege Üniversitesi Ziraat Fakültesi Bahçe Bitkileri Bölümü, Bornova-İzmir, 440.
  • Yanmaz R, Duman İ, Yaralı F, Demir K, Sarıkamış G, Sarı N, Balkaya A, Kaymak HÇ, Akan S ve Özalp R (2015) “Sebze Üretiminde Değişimler ve Yeni Arayışlar”, Türkiye Ziraat Mühendisliği VIII. Teknik Kongresi, Bildiriler Kitabı-1, 579- 605, 12-16 Ocak 2015, Ankara.
  • Yu S, Wang W, Wang B. 2012. Recent progress of salinity tolerance research in plants. Russian Journal of Genetics. 48:497–505.
  • Zhou X, Yang T, Jiang Z, He Z, Zou Z. 2019. Regulation of melatonin on chlorophyll fluorescence and nitrate accumulation in lettuce seedlings under excess nitrate stress. IOP Conf. Series: Earth and Environmental Science, 330,1-5
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)