Pseudomonas aeruginosa and Its Pathogenicity

Pseudomonas aeruginosa and Its Pathogenicity

Pseudomonas aeruginosa, belonging to the Pseudomonadaceae family, is Gram-negative, rod- shaped, motile, aerobic, endospore negative, oxidase and catalase positive. It is widely found in nature and isolated from soil, plants, water and animals. It can grow rapidly on the surface of the food and form oxidized products and mucous substances. P. aeruginosa, one of the leading foodborne pathogens, causes important concerns in food safety due to being a source of contamination, causing food poisoning and antimicrobial resistance in animals, forming biofilms and difficulties in preventing biofilms. In this review, information on history, microbiological, cultural and biochemical characteristics, virulence factors and pathogenicity of P. aeruginosa are given. In addition, infections caused by P. aeruginosa and its presence in food are described.

___

  • Akan İM. 2009. Et ve bazı et ürünleri ile soğuk hava depolarında Pseudomonas türlerinin izolasyonu ve identifikasyonu, Yüksek Lisans Tezi, Selçuk Üniversitesi Sağlık Bilimleri Enstitüsü, Konya.
  • Alcorn JF, Wright JR. 2004. Degradation of pulmonary surfactant protein D by Pseudomonas aeruginosa elastase abrogates innate immune function. Journal of Biological Chemistry, 279(29): 30871-30879.
  • Arnaut‐Rollier I, Vauterin L, De Vos P, Massart DL, Devriese LA, De Zutter L, Van Hoof J. 1999. A numerical taxonomic study of the Pseudomonas flora isolated from poultry meat. Journal of Applied Microbiology 87: 15-28.
  • Arumugam SN, Rudraradhya AC, Sadagopan S, Sukumaran S, Sambasivam G, Ramesh N. 2018. Analysis of susceptibility patterns of Pseudomonas aeruginosa and isolation, characterization of lytic bacteriophages targeting multi drug resistant Pseudomonas aeruginosa. Biomedical and Pharmacology Journal, 11(2): 1105-1117.
  • Atanaskovic I, Mosbahi K, Sharp C, Housden NG, Kaminska R, Walker D, Kleanthous C. 2020. Targeted killing of Pseudomonas aeruginosa by pyocin G occurs via the hemin transporter hur. Journal of Molecular Biology, 432: 3869-3880.
  • Bakkal S, Robinson SM, Ordonez CL, Waltz, DA, Riley MA. 2010. Role of bacteriocins in mediating interactions of bacterial isolates taken from cystic fibrosis patients. Microbiology, 156: 2058-2067.
  • Baltch AL, Smith RP. 1994. Pseudomonas aeruginosa: infections and treatment. Infectious Disease and Therapy Series, No. 12: 615, Marcel Dekker, Inc., New York, USA.
  • Bardoel BW, Van der Ent S, Pel MJ, Tommassen J, Pieterse CM, Van Kessel KP, Van Strijp JA 2011. Pseudomonas evades immune recognition of flagellin in both mammals and plants. PLoS Pathogens, 7(8): e1002206.
  • Barker AP, Vasil AI, Filloux A, Ball G, Wilderman PJ, Vasil ML. 2004. A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipid chemotaxis. Molecular Microbiology, 53(4): 1089-1098.
  • Batt CA. 2016. Virulence. Reference Module in Food Science. Elsevier Inc., USA, http://dx.doi.org/10.1016/B978-0-08- 100596-5.03453-31
  • Benie CKD, Dadié A, Guessennd N, N’gbesso-Kouadio NA, Kouame NZD, N’golo DC, Dosso M. 2017. Characterization of virulence potential of Pseudomonas aeruginosa isolated from bovine meat, fresh fish, and smoked fish. European Journal of Microbiology and Immunology, 7(1): 55-64.
  • Blumer C, Haas D. 2000. Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology, 173: 170–177.
  • Brandel J, Humbert N, Elhabiri M, Schalk IJ, Mislin GL, Albrecht-Gary AM. 2012. Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. Dalton Transactions, 41: 2820–2834.
  • Byrd MS, Sadovskaya I, Vinogradov E, Lu H, Sprinkle AB, Richardson SH, Ma L, Ralston B, Parsek MR, Anderson EM, Lam JS, Wozniak DJ. 2009. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Molecular Microbiology, 73: 622–638.
  • Cavallo JD, Fabre R, Leblanc F, Nicolas-Chanoine MH, Thabaut A. 1996. Antibiotic susceptibility and mechanisms of beta- lactam resistance in 1310 strains of Pseudomonas aeruginosa: A French multicentre study. Journal of Antimicrobial Chemotherapy, 46(1): 133-136.
  • Chen TR, Wei QK, Chen YJ. 2011. Pseudomonas spp. and Hafnia alvei growth in UHT milk at cold storage. Food Control, 22(5): 697-701.
  • Chemani C, Imberty A, De Bentzmann S, Pierre M, Wimmerová M, Guery BP, et al. 2009. Role of LecA and LecB lectins in Pseudomonas aeruginosa induced lung injury and effect of carbohydrate ligands. Infection Immunology, 77: 2065–2075.
  • Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, Wong GCL, Parsek MR. 2011. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathogens, 7: e1001264.
  • Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, Howell PL, Wozniak DJ, Parsek MR. 2012. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrixemi. Environmental Microbiology, 14(8): 1913–1928.
  • Cornelis P, Dingemans J. 2013. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Frontiers in Cellular and Infection Microbiology 3: 75. doi.org/10.3389/fcimb.2013.00075
  • Crone S, Vives-Flórez M, Kvich L, Saunders MA, Malone M, Nicolaisen HM, Martínez-García E, Rojas-Acosta C, Gomez- Puerto CM, Calum H, Whitely M, Kolter R, Bjarnsholt T. 2020. The environmental occurrence of Pseudomonas aeruginosa. APMIS, 128: 220-231.
  • Dietrich LE, Price-Whelan A, Petersen A, Whiteley M, Newman DK. 2006. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Molecular Microbiology, 61(5):1308-13021.
  • Diggle SP, Stacey RE, Dodd C, Cámara M, Williams P, Winzer K. 2006. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environmental Microbiology, 8: 1095–1104.
  • Diggle SP, Whiteley M. 2020. Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology, 166(1): 30–33.
  • Dogan B, Boor KJ. 2003. Genetic diversity and spoilage potentials among Pseudomonas spp. isolated from fluid milk products and dairy processing plants. Applied and Environmental Microbiology, 69(1): 130-138.
  • Dong Y, Wang L, Zhang L. 2007. Quorum quenching microbial infections: mechanisms and implication. Philosophical Transactions of the Royal Society B, 362: 1201-1211.
  • Duanis-Assaf D, Steinberg D, Chai Y, Shemesh M. 2016. The Lux S based quorum sensing governs lactose induced biofilm formation by Bacillus subtilis. Microbiology, 6: 151.
  • Dumas Z, Ross-Gillespie A, Kümmerli R. 2013. Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Proceedings of The Royal Society B, 280: 20131055.
  • Duport C, Baysse C, Michel-Briand Y. 1995. Molecular characterization of pyocin S3, a novel S-type pyocin from Pseudomonas aeruginosa. Journal of Biological Chemistry, 270: 8920-8927.
  • Fata MM, Shirin G, Rehm BHA. 2017. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Frontiers in Cellular and Infection Microbiology, 7: 39 doi.10.3389/fcimb.2017.00039
  • Faure K, Shimabukuro D, Ajayi T, Allmond LR, Sawa T, Wiener- Kronish JP. 2003. O-Antigen serotypes and type III secretory toxins in clinical isolates of Pseudomonas aeruginosa. Journal of Clinical Microbiology, 41(5): 2158–2160.
  • Feldman M, Bryan R, Rajan S, Scheffler L, Brunnert S, Tang H, Prince A. 1998. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infection and Immunity, 66(1): 43-51.
  • Franklin MJ, Ohman DE. 1993. Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. Journal of Bacteriology, 175: 5057–5065.
  • Franklin MJ, Nivens DE, Weadge JT, Howell PL. 2011. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Frointers in Microbiology, 2:167, doi: 10.3389/fmicb.2011.00167.
  • Franzetti L, Scarpellini M. 2007. Characterisation of Pseudomonas spp. isolated from foods. Annals of Microbiology, 57(1): 39-47.
  • Ganesh PS, Rai VR. 2018. Attenuation of quorum-sensing- dependent virulence factors and biofilm formation by medicinal plants against antibiotic resistant Pseudomonas aeruginosa. Journal of Traditional and Complementary Medicine, 8: 170-177.
  • García-García JD, Sánchez-Thomas R, Moreno-Sánchez R. 2016. Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms. Biotechnology Advances, 34: 859–873.
  • Geornaras I, Kunene NF, von Holy A, Hastings JW. 1999. Amplified fragment length polymorphism fingerprinting of Pseudomonas strains from a poultry processing plant. Applied and Environmental Microbiology, 65(9): 3828-3833.
  • Ghequire MGK, De Mot GR. 2014. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiology Reviews, 38: 523–568.
  • Giamarellou H. 2000. Therapeutic guidelines for Pseudomonas aeruginosa infections. International Journal of Antimicrobial Agents, 16(2): 103-106.
  • Gilboa-Garber N, Katcoff DJ, Garber NC. 2000. Identification and characterization of Pseudomonas aeruginosa PA-IIL lectin gene and protein compared to PA-IL. FEMS Immunology and Medical Microbiology, 29: 53–57.
  • Glasser NR, Kern SE, Newman DK. 2014. Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton- motive force. Molecular Microbiology, 92(2): 399-412.
  • Glick J, Garber N. 1983. The intracellular localization of Pseudomonas aeruginosa lectins. Journal of General Microbiology, 129: 3085–3090. doi: 10.1099/00221287-129- 10-3085
  • Goldberg JB, Ohman DE. 1987. Activation of an elastase precursor by the lasA gene product of Pseudomonas aeruginosa. Journal of Bacteriology, 169: 4532–4539.
  • Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, Parsek MR. 2001. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. Journal of Bacteriology, 183(18):5395-5401.
  • Hilbert F, Scherwitzel M, Paulsen P, Szostak MP. 2010. Survival of Campylobacter jejuni under conditions of atmospheric oxygen tension with the support of Pseudomonas spp. Applied and Environmental Microbiology, 76(17): 5911- 5917.
  • Hoge R, Pelzer A, Rosenau F, Wilhelm S. 2010. Weapons of a pathogen: Proteases and their role in virulence of Pseudomonas aeruginosa. In: Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, Mendez-Vilas A, (ed.): 383-395.
  • Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez- Zorrilla S, Grau S. 2019. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clinical Microbiology Reviews, 32(4): e00031-19.
  • Høiby N, Ciofu O, Bjarnsholt T. 2010. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiology, 5(11): 1663- 1674.
  • Jacob F. 1954. Induced biosynthesis and mode of action of a pyocine, antibiotic produced by Pseudomonas aeruginosa. Annales de l'Institut Pasteur, 86: 149-160.
  • Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ. 2004. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. Journal of Bacteriology, 186: 4466–4475.
  • Jayaseelan S, Ramaswamy D, Dharmaraj S. 2014. Pyocyanin: production, applications, challenges and new insights. World Journal of Microbiology and Biotechnology, 30: 1159-1168
  • Jennings LK, Storek KM, Ledvina HE, Coulon C, Marmont LS, Sadovskaya I, Secor PR, Tseng BS, Scian M, Filloux A, Wozniak DJ, Howell PL, Parseket MR. 2015. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proceedings of the National Academy of Sciences, 112: 11353-11358.
  • Jennings LK, Dreifus JE, Reichhardt C, Storek KM, Secor PR, Wozniak DJ, Hisert KB, Parsek MR. 2021. Pseudomonas aeruginosa aggregates in cystic fibrosis sputum produce exopolysaccharides that likely impede current therapies. Cell Reports, 34: 108782.
  • Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. 2012. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiology and Molecular Biology Reviews, 76: 46–65.
  • Kageyama M, Ikeda K, Egami F. 1964. Studies of a pyocin. III. Biological properties of the pyocin. Journal of Biochemistry, 55: 59-64.
  • Keskin D, Ekmekçi S. 2008. Investigation of the incidence of Pseudomonas aeruginosa in foods and the effect of salt and pH on P. aeruginosa. Hacettepe Journal of Biology and Chemistry, 36(1): 41-46.
  • Kessler E, Safrin M, Olson JC, Ohman DE. 1993. Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. Journal of Biological Chemistry, 268: 7503–7508.
  • Khattab MA, Nour MS, ElSheshtawy NM. 2015. Genetic identification of Pseudomonas aeruginosa virulence genes among different isolates. Journal of Microbial and Biochemical Technology, 7: 274–277.
  • King A, Phillips I. 1978. The identification of pseudomonads and related bacteria in a clinical laboratory. Journal of Medical Microbiology, 11(2): 165-176.
  • Kumari S, Harjai K, Chhibber S. 2009. Characterization of Pseudomonas aeruginosa PAO specific bacteriophages isolated from sewage samples. American Journal of Biomedical Sciences, 1(2): 91-102.
  • Kuang Z, Hao Y, Walling BE, Jeffries JL, Ohman DE, Lau GW. 2011. Pseudomonas aeruginosa elastase provides an escape from phagocytosis by degrading the pulmonary surfactant protein-A. PLoS One 6: e27091. doi:10.1371/journal. pone.0027091.
  • Laarman AJ, Bardoel BW, Ruyken M, Fernie J, Milder F, Van Strijp JA, Rooijakkers SH. 2012. Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways. The Journal of Immunology, 188(1): 386-393.
  • Laursen JB, Nielsen J. 2004. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chemical Reviews, 104(3): 1663-1686.
  • Le Berre R, Nguyen S, Nowak E, Kipnis E, Pierre M, Quenee L, Faure K. 2011. Relative contribution of three main virulence factors in Pseudomonas aeruginosa pneumonia. Critical Care Medicine 39(9): 2113-2120.
  • Lee J, Zhang L. 2015. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell, 6:26–41.
  • Lenney W, Gilchrist FJ. 2011. Pseudomonas aeruginosa and cyanide production. European Respiratory Journal, 37: 482– 483. doi: 10.1183/09031936.00122810
  • Levinson W. 2008. Tıbbi Mikrobiyoloji ve İmmünoloji, Çeviri Editörü/Editörleri, Tuncay Özgünen, Ankara.
  • Ling H, Saeidi N, Rasouliha BH, Chang MW. 2010. A predicted S- type pyocin shows a bactericidal activity against clinical Pseudomonas aeruginosa isolates through membrane damage. FEBS Letters 584:3354-3358.
  • Lister PD, Wolter DJ, Hanson ND. 2009. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clinical Microbiology Reviews, 22(4): 582-610.
  • Lopez MES, Carvalho MMD, Gouvêa DM, Batalha LS, Neves IO, Mendonça RCS. 2015. Isolation and characterization of lytic bacteriophages as an alternative to prevent Pseudomonas spp. in poultry industry. MOJ Food Processing and Technology 1(3):00018, 1-6.
  • Lyczak JB, Cannon CL, Pier GB. 2000. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes and Infection, 2(9): 1051-1060.
  • Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. 2009. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathogens, 5: e1000354.
  • Malloy JL, Veldhuizen RA, Thibodeaux BA, O’Callaghan RJ, Wright JR. 2005. Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions. American Journal of Physiology-Lung Cellular and Molecular Physiology, 288: 409–418.
  • Mariencheck WI, Alcorn JF, Palmer SM, Wright JR. 2003. Pseudomonas aeruginosa elastase degrades surfactant proteins A and D. American Journal of Respiratory Cell and Molecular Biology, 28: 528 –537.
  • Matsumoto K. 2004. Role of bacterial proteases in pseudomonal and serratial keratitis. Biological Chemistry, 385: 1007–1016.
  • Matheson NR, Potempa J, Travis J. 2006. Interaction of a novel form of Pseudomonas aeruginosa alkaline protease (aeruginolysin) with interleukin-6 and interleukin-8. Biological Chemistry, 387: 911-915.
  • Meyer JM. 2000. Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Archives of Microbiology, 174: 135-142.
  • Meirelles LA, Newman DK. 2018. Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa. Molecular Microbiology, 110(6): 995–1010.
  • Michel-Briand Y, Baysse C. 2002. The pyocins of Pseudomonas aeruginosa. Biochimie, 84(5-6): 499-510.
  • Mitov I, Tanya S, Boyka M. 2010. Prevalence of virulence genes among bulgarian nosocomial and cystic fibrosis isolates of Pseudomonas aeruginosa. Brazilian Journal of Microbiology, 41: 588–595.
  • Mohamed AA, Elshawadfy AM, Amin G, Askora A. 2021. Characterization of R-pyocin activity against Gram-positive pathogens for the first time with special focus on Staphylococcus aureus. Journal of Applied Microbiology, doi.org/10.1111/jam.15134
  • Moore RBE, Tindall JB, Santos MDV, Pieper HD, Ramos J, Palleroni JN. 2006. Nonmedical: Pseudomonas. Prokaryotes, 6: 646-703.
  • Morales PA, Aguirre JS, Troncoso MR, Figueroa GO. 2016. Phenotypic and genotypic characterization of Pseudomonas spp. present in spoiled poltry fillets sold in retail settings. LWT, 73: 609-614.
  • Mun JJ, Tam C, Kowbel D, Hawgood S, Barnett MJ, Evans DJ, Fleiszig SM. 2009. Clearance of Pseudomonas aeruginosa from a healthy ocular surface involves surfactant protein D and is compromised by bacterial elastase in a murine null- infection model. Infection and Immunity, 77(6): 2392-2398.
  • Murray TS, Egan M, Kazmierczak BI. 2007. Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Current Opinion Pediatrics, 19: 83–88.
  • Müller MM, Hörmann B, Syldatk C, Hausmann R. 2010. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Applied Microbiology and Biotechnology, 87(1): 167-174.
  • Naz SA, Jabeen N, Sohail M, Rasool SA. 2015. Biophysicochemical characterization of Pyocin SA189 produced by Pseudomonas aeruginosa SA189. Brazilian Journal of Microbiology, 46:1147-1154.
  • Neves PR, McCulloch JA, Mamizuka EM, Lincopan N. 2014. Pseudomonas | Pseudomonas aeruginosa. Encyclopedia of Food Microbiology (Second Edition), pp. 253-260.
  • Newman JW, Floyd RV, Fothergill JL. 2017. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiology Letters, 364(15). doi: 10.1093/femsle/fnx124. PMID: 28605563
  • Ohfuji K, Sato N, Hamada-Sato N, Kobayashia T, Imada C, Okuma H, Watanabe E. 2004. Construction of a glucose sensor based on a screen-printed electrode and a novel mediator pyocyanin from Pseudomonas aeruginosa. Biosensors and Bioelectronics 19: 1237-1244.
  • O’Toole GA. 2002. Microbiology: A resistance switch. Nature, 416: 695–696.
  • Palleroni NJ. 1993. Pseudomonas classification: A new case history in the taxonomy of Gram-negative bacteria. Antonie van Leeuwenhoek, 64: 231-251.
  • Pamp SJ, Tolker-Nielsen T. 2007. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. Journal of Bacteriology, 189: 2531–2539
  • Parret AH, De Mot R. 2002. Bacteria killing their own kind: novel bacteriocins of Pseudomonas and other gamma- proteobacteria. Trends Microbiology, 10:107-112.
  • Parsek MR, Singh PK. 2003. Bacterial biofilms: An emerging link to disease pathogenesis. Annual Review of Microbiology, 57: 677–701.
  • Passerini L, Lam K, Costerton JW, King EG. 1992. Biofilms on indwelling vascular catheters. Critical Care Medicine, 20(5): 665-673.
  • Pearson JP, Pesci EC, Iglewski BH. 1997. Role of Pseudomonas aeruginosa las and rhl quorum sensing systems in control of elastase and rhamnolipid biosynthesis genes. Journal of Bacteriology, 179: 5756-5767.
  • Pel MJ, Van Dijken AJ, Bardoel BW, Seidl MF, Van der Ent S, Van Strijp JA, Pieterse CM. 2014. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA. Molecular Plant-Microbe Interaction, 27(7):603-10.
  • Pesci EC, Pearson JP, Seed PC, Iglewski BH. 1997. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. Journal of Bacteriology, 179: 3127-3132
  • Peters JE, Park SJ, Darzins A, Freck LC, Saulnier JM, Wallach JM, Galloway DR. 1992. Further studies on Pseudomonas aeruginosa LasA: analysis of specificity. Molecular Microbiology, 6: 1155–1162.
  • Pier GB, Coleman F, Grout M, Franklin M, Ohman DE. 2001. Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infection Immunity, 69: 1895–1901.
  • Pierre C, Jozef D. 2013. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Frontiers in Cellular and Infection Microbiology, 3: 75 doi.10.3389/fcimb.2013.00075
  • Pitt TL. 1998. Pseudomonas, Burkholderia, and related genera, p. 1109-1138. In B. I. Duerden (ed.), Microbiology and microbial infections, vol. 2. Oxford University Press Inc., New York, NY.
  • Rajmohan S, Dodd CER, Waites WM. 2002. Enzymes from isolates of Pseudomonas fluorescens involved in food spoilage. Journal of Applied Microbiology, 93(2): 205-213.
  • Raposo A, Pérez E, De Faria CT, Ferrús MA, Carrascosa C. 2017. Food spoilage by Pseudomonas spp.—an overview. In: Food Borne Pathogens and Antibiotic Resistance, Om V. Singh (ed.), pp. 41-58, John Wiley and Sons, Inc., ISBN 978- 111913918-8.
  • Remington JS, Schimpff SC. 1981. Occasional notes please don’t eat the salads. The New England Journal of Medicine, 304: 433-435.
  • Rocha AJ, Barsottini MRDO, Rocha RR, Laurindo MV, Moraes FLLD, Rocha SLD. 2019. Pseudomonas aeruginosa: virulence factors and antibiotic resistance genes. Brazilian Archives of Biology and Technology, 62: e19180503.
  • Rodrigues RD, Loiko MR, de Paula CMD, Hessel CT, Jacxsens L, Uyttendaele M, Bender RJ, Tondo EC. 2014.
  • Microbiological contamination linked to implementation of good agricultural practices in the production of organic lettuce in Southern Brazil. Food Control, 42:152-164.
  • Ryder C, Byrd M, Wozniak DJ. 2007. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Current Opinion Microbiology, 10: 644–648.
  • Sah S, Krishnani S, Singh R. 2021. Pseudomonas mediated nutritional and growth promotional activities for sustainable food security. Current Research in Microbial Sciences, 2: 100084.
  • Scholl D, Cooley M, Williams SR, Gebhart D, Martin D, Bates A, Mandrell R. 2009. An Engineered R-Type Pyocin is a highly specific and sensitive bactericidal agent for the food- borne pathogen Escherichia coli O157:H7. Antimicrobial Agents and Chemotherapy, 53: 3074-3080.
  • Scholl D, Martin DW. 2008. Antibacterial efficacy of R-type pyocins towards Pseudomonas aeruginosa in a murine peritonitis model. Antimicrobial Agents and Chemotherapy, 52: 1647-1652.
  • Sonawane A, Jyot, J, Ramphal R. 2006. Pseudomonas aeruginosa LecB is involved in pilus biogenesis and protease IV activity but not in adhesion to respiratory mucins. Infection Immunology, 74: 7035-7039.
  • Soberón-Chávez G, Lépine F, Déziel E. 2005. Production of rhamnolipids by Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 68(6): 718-725.
  • Stapper AP, Ohman DE, Kharazmi A. et al. 2004. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. Journal of Medical Microbiology, 53: 679–690.
  • Stewart PS, Costerton JW. 2001. Antibiotic resistance of bacteria in biofilms. Lancet, 358: 135-138.
  • Stewart PS, Franklin MJ. 2008. Physiological heterogeneity in biofilms. Nature Reviews Microbiology, 6:199–210.
  • Strauch E, Kaspar H, Schaudinn C, Dersch P, Madela K, Gewinner C, Hertwig S, Wecke J, Appel B. 2001. Characterization of enterocoliticin, a phage tail-like bacteriocin, and its effect on pathogenic Yersinia enterocolitica strains. Applied and Environmental Microbiology, 67: 5634-5642.
  • Streeter K, Katouli M. 2016. Pseudomonas aeruginosa: a review of their pathogenesis and prevalence in clinical settings and the environment. Infection Epidemiology and Medicine 2: 25–32.
  • Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I. 2002. Biofilm material properties as related to shear-induced deformation and detachment phenomena. Journal of Industrial Microbiology and Biotechnology, 29: 361–367.
  • Sudhakar T, Karpagam S, Shiyama S. 2013. Analysis of pyocyanin compound and its antagonistic activity against phytopathogens. International Journal of ChemTech Research, 5: 1101-1108.
  • Tang Y, Ali Z, Zou J, Jin G, Zhu J, Yang J, Dai J. 2017. Detection methods for Pseudomonas aeruginosa: history and future perspective. RSC Advances, 7(82): 51789-51800.
  • Tang K, Zhang XH. 2014. Quorum quenching agents: resources for antivirulence therapy. Marine Drugs, 12: 3245–3282.
  • Takeya K, Minamishima Y, Amako K., et al. 1967. A small rod- shaped pyocin. Virology, 31: 166-168.
  • Takeya K, Minamishima Y, Ohnishi Y, Amako K. 1969. Rod- shaped pyocin 28. Journal of General Virology, 4(2): 145-149.
  • Toder DS, Ferrell SJ, Nezezon JL, Rust L, Iglewski BH. 1994. lasA and lasB genes of Pseudomonas aeruginosa: analysis of transcription and gene product activity. Infection and Immunity, 62: 1320–1327.
  • Xu Z, Xie J, Soteyome T, Peters BM, Shirtliff ME, Liu J, Harro JM. 2019. Polymicrobial interaction and biofilms between Staphylococcus aureus and Pseudomonas aeruginosa: an underestimated concern in food safety. Current Opinion in Food Science, 26: 57-64.
  • Van Delden C, Iglewski BH. 1998. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerging Infectious Diseases, 4(4): 551.
  • Van Delden C. 2004. Virulence factors in Pseudomonas aeruginosa, In Virulence and Gene Regulation (pp. 3-45), Springer, Boston.
  • Vihavainen EJ, Björkroth J. 2010. Microbial ecology and spoilage of poultry meat and poultry meat products. Handbook of Poultry Science and Technology, Secondary Processing, 2: 485-493.
  • Villavicencio RT. 1998. The history of blue pus. Journal of the American College of Surgeons, 187: 212-216.
  • Virupakshaiah DBM, Hemalata VB. 2016. Molecular identification of Pseudomonas aeruginosa from food borne isolates. International Journal of Current Microbiology and Applied Sciences, 5(6): 1026-1032.
  • Visca P, Imperi F, Lamont IL. 2007. Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiology, 15: 22–30.
  • Wang Y, Kern SE, Newman DK. 2010. Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. Journal of Bacteriology, 192(1):365-369.
  • Wang Y, Wilks JC, Danhorn T, Ramos I, Croal L, Newman DK. 2011. Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. Journal of Bacteriology, 193(14):3606-3617.
  • Williams SR, Gebhart D, Martin DW, Scholl D. 2008. Retargeting R-type pyocins to generate novel bactericidal protein complexes. Applied and Environmental Microbiology, 74(12): 3868–3876.
  • Williams P, Winzer K, Chan WC, Camara M. 2007. Look who's talking: communication and quorum sensing in the bacterial world. Philosophical Transactions of the Royal Society B, 362: 1119-1134.
  • Woods DE. 2004. Comparative genomic analysis of Pseudomonas aeruginosa virulence. Trends in Microbiology, 12(10): 437-439.
  • Wood S, Goldufsky J, Shafikhani SH. 2015. Pseudomonas aeruginosa ExoT induces atypical anoikis apoptosis in target host cells by transforming crk adaptor protein into a cytotoxin. Plos Pathogens, 11(5): e1004934.
  • Wozniak DJ, Wyckoff TJ, Starkey M, Keyser R, Azadi P, O’Toole GA, Parsek MR. 2003. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proceedings of the National Academy of Sciences of the United, 100: 7907–7912.
  • Yıldırım Y. 1992. Et Endüstrisi. 3. Baskı, Yıldırım Basımevi, Ankara, Sayfa: 209-229.
  • Yuan Y, Qu K, Tan D, Li X, Wang L, Cong C, Xu Y. 2019. Isolation and characterization of a bacteriophage and its potential to disrupt multi-drug resistant Pseudomonas aeruginosa biofilms. Microbial Pathogenesis, 128: 329-336.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Alkali Extraction of Dietary Fiber from Trigonella-foenum graecum L. Seeds (Dietary Fiber of Fenugreek Seeds)

İzzet Türker, Hilal İşleroğlu, Sedanur Daştan

The Effect of Hatching System and Egg Weight on Hatching Traits in Turkish Geese: Hatch time, Hatchability and Gosling Quality Traits

Mehmet Akif Boz, Musa Sarıca, Kadir Erensoy, Ahmet Uçar

Essential Oil Composition of Lavender (Lavandula angustifolia Mill.) at Various Plantation Ages and Growth Stages in the Mediterranean Region

Muzaffer Barut, Leyla Sezen Tansi, Şengül Karaman

Application of Multivariate Principal Component Factor Analysis to Morphological Characterization of Camels in Ethiopia

Berhanu Bekele, Kefelegn Kebede, Sisay Tilahun, Biresaw Serda

Antimicrobial Activity of Garlic (Allium Sativum L.) in The Preservation of Merguez, A Traditional Algerian Sausage

Abed Hanane, Rouag Noureddine, Nasri Meriem

Allium Testi ile Floksinin Genotoksik Etkisinin Değerlendirilmesi

Nergis Kaya

Do Rural Farmers Save? Evidence from Toro, Bauchi State, Nigeria

Adam Ibrahim Bilyaminu, Sunday Sambo Mailumo

Economics of Plantain Production among Farmers in Northeast Nigeria

Love Joel, Abubakar Alhaji Umaru Jongur, Elizabeth Femi Adebayo, Amurtiya Michael

Live Weight Prediction in Norduz Sheep Using Machine Learning Algorithms

Cihan Çakmakçı

Effects of Cricket Addition on the Chemical, Functional, and Sensory Properties of Complementary Formulation from Millet Flour

Audu Basiru Danjuma, Amidu Momoh, Egwujeh Simeon Iko-Ojo Dignity