Phillyrea latifolia L: Farklı Ekstraktlarının Biyolojik Özelliklerinin İncelenmesi

Phillyrea latifolia Akdeniz geleneksel tıbbında kanamayı durdurucu, diüretik ve hipoglisemik olarak yaygın şekilde kullanılmaktadır. Bu çalışma farklı çözücülerle (etil asetat, metanol ve su) elde edilen P. latifolia L. yapraklarının biyolojik özellikleri (antioksidan ve enzim inhibitör) üzerine odaklanmıştır. Ayrıca, P. latifolia L. ekstraktlarındaki fenoliklerin ve flavonoidlerin miktarı spektrofotometrik yöntemlerle değerlendirildi. Metanol ekstrak yüksek toplam flavonoid içerik gösterdi (68.07 mg RE g-1). Etil asetat ekstraktı güçlü radikal süpürme aktivitesi sergiledi (190.71 mg TE g-1). En iyi CUPRAC aktivitesi methanol ekstraktı tarafından gösterilmiştir (609.38 mg TE g-1). Su ekstraktı (14.83 mg EDTA g-1) metal şelatlama deneyinde yüksek aktivite sergiledi. Sonuçlar etil asetat ekstraktı enzim inhibitor testlerinde yüksek aktivite gösterdi. Elde edilen sonuçlar göz önüne alındığında, P. latifolia L. yaprakları umut verici bir doğal antioksidan kaynağıdır ve bulaşıcı olmayan hastalıkların tedavisi için sağlıklı yararlar sağlayabilir.

Phillyrea latifolia L. :Biological Properties Screening of Different Extracts

Phillyrea latifolia L. is widely used as astringent, diuretic and hypoglycaemic in Mediterranean traditional medicine. This work focused on the biological properties (antioxidant and enzyme inhibitory) of P. latifolia L. leaves extracts, obtained by different solvents (ethyl acetate, methanol and aqueous). The amount of phenolics and flavonoids in P. latifolia L. extracts was also assessed by spectrophotometric methods. The methanol extract showed the highest total flavonoid content (68.07 mg RE g-1). The ethyl acetate extract exhibited stronger DPPH radical scavenging activity (190.71 mg TE g-1). The best CUPRAC activity was shown by the methanol extract (609.38 mg TE g-1). The aqueous extract (14.83 mg EDTA g-1) displayed the highest activity in metal chelating assay. Results showed that ethyl acetate extract indicated the highest activity in enzyme inhibition tests. Considering the obtained data, P. latifolia L. has potential to be used as sources of natural antioxidant and enzyme inhibitor.

___

  • [1] Kwan I, Embuscado ME. Spices and herbs: natural sources of antioxidants - A mini review. J Funct Foods. 2015; 18(B): 811-819.
  • [2] Singh B, Singh JP, Kaur A, Singh N. Bioactive compounds in banana and their associated health benefits – a review. Food Chem. 2016; 206: 1-11.
  • [3] Teinkela, JEM, Noundou XS, Mimba JEZ, Meyer F, Tabouguia OM, Nguedia JCA, et al. Compounds isolation and biological activities of Piptadeniastrum africanum (hook. f.) Brennan (Fabaceae) roots. J Ethnopharmacol. 2020; 255 (12): 112716.
  • [4] Zengin G, Cvetanović A, Gašić U, Stupar A, Bulut G, Senkardes I, et al. Chemical composition and bio-functional perspectives of Erica arborea L. extracts obtained by different extraction techniques: Innovative insights. Ind Crops Prod. 2019; 142: 111843.
  • [5] Bastías-Montes JM, Monterrosa K, Muñoz-Fariña O, García O, Acuña-Nelson SM, Vidal-San Martín C, et al. Chemoprotective and antiobesity effects of tocols from seed oil of Maqui-berry: Their antioxidative and digestive enzyme inhibition potential. Food Chem Toxicol 2020; 136: 111036.
  • [6] Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014, J Nat Prod. 2016; 79(3): 629–61.
  • [7] Niedermeyer TH. Anti-infective natural products from cyanobacteria. Planta Med. 2015; 81 (15): 1309–25.
  • [8] Dong S, Duan Y, Hu Y, Zhao Z. Advances in the pathogenesis of Alzheimer's disease: a re-evaluation of amyloid cascade hypothesis. Transl Neurodegener. 2012; 1(1): 18. [9] Kepp, KP. Bioinorganic chemistry of Alzheimer's disease. Chem Rev. 2012;112(10): 5193–239.
  • [10] Rahman A, Choudhary MI. Drug design and discovery in Alzheimer's disease. 1 st ed. Elsevier, 2015.
  • [11] Maresch CC, Stute DC, Alves MG, Oliveira, PF, de Kretser DM, Linn T. Diabetes-induced hyperglycemia impairs male reproductive function: a systematic review. Hum Reprod Update. 2018; 24(1): 86–105.
  • [12] Omolaoye TS, Skosana BT, du Plessis SS. Diabetes mellitus- induction: effect of different streptozotocin doses on male reproductive parameters, Acta Histochem. 2018; 120(2): 103–9.
  • [13] Li ZM, Liu N, Jiang YP, Yang JM, Zheng J, Sun M, et al. Vitexin alleviates streptozotocin-induced sexual dysfunction and fertility impairments in male mice via modulating the hypothalamus-pituitary-gonadal axis. Chem Biol Interact. 2019; 297: 119–29.
  • [14] Cho NH, Shaw JE, Karuranga S, Huang Y, Da Rocha Fernandes JD, Ohlrogge AW, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045, Diabetes Res Clin Pract. 2018; 138: 271–281.
  • [15] Buchholz T, Melzig MF. Medicinal plants traditionally used for treatment of obesity and diabetes mellitus – screening for pancreatic lipase and α-amylase inhibition. Phytother Res. 2016; 30(2): 260–6.
  • [16] Maelicke A, Samochocki M, Jostock R, Fehrenbacher A, Ludwig J, Albuquerque EX, Zerlin, M. Allosteric sensitization of nicotinic receptors by galantamine, a new treatment strategy for Alzheimer’s disease. Biol Psychiat. 2001; 49(3): 279-288.
  • [17] Kim YJ, Uyama H. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci. 2005; 62(15): 1707-23.
  • [18] Etxeberria U, de la Garza AL, Campion J, Martínez JA, Milagro FI. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin Ther Tar. 2012; 16(3): 269-97.
  • [19] Pieroni A, Pachaly P, Huang Y, Van Poel B, Vlietinck AJ. Studies on anti-complementary activity of extracts and isolated flavones from Ligustrum vulgare and Phillyrea latifolia leaves (Oleaceae). J Ethnopharmacol. 2000; 70(3): 213-217.
  • [20] Diaz AM, Abad MJ, Fernandez L, Recuero C, Villaescusa L, Silvan AM, et al. In vitro anti-inflammatory activity of iridoids and triterpenoid compounds isolated from Phillyrea latifolia L. Biol Pharm Bull. 2000; 23(11): 1307−13.
  • [21] Tuzlacı E, Aymaz PE. Turkish folk medicinal plants, part IV: Gönen (Balıkesir). Fitoterapia. 2001; 72(4): 323-343.
  • [22] Agati G, Galardi C, Gravano E, Romani A, Tattini M. Flavonoid distribution in tissues of Phillyrea latifolia L. leaves as estimated by microspectrofluorometry and multispectral fluorescence microimaging. Photochem Photobiol. 2002; 76(3): 350-360.
  • [23] Dıaz-Lanza AM, Abad-Martinez MJ, Fernandez-Matellano L, Recuero Carretero C, Villaescusa Castillo L, Silvan Sen AM, et al. Lignan and phenylpropanoid glycosides from Phillyrea latifolia and their in vitro antiinflammatory activity. Planta Med. 2001; 67(3): 219–223.
  • [24] Hussain H, Tobji RS. Antibacterial Screning of Some Libyan Medicinal Plants. Fitoterapia. 1997; 68(5): 467-70.
  • [25] Grochowski DM, Uysal S, Zengin G, Tomczyk M. In vitro antioxidant and enzyme inhibitory properties of Rubus caesius L. Int J Environ Health Res.2019; 29(3): 237-245.
  • [26] Rutkowska M, Olszewska MA, Kolodziejczyk-Czepas J, Nowak P, Owczarek A. Sorbus domestica leaf extracts and their activity markers: antioxidant potential and synergy effects in scavenging assays of multiple oxidants. Molecules. 2019; 24(12): 2289.
  • [27] Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016; Dec 29(5):e47.
  • [28] Ayranci E, Erkan N. Radical scavenging capacity of methanolic Phillyrea latifolia L. extract: anthocyanin and phenolic acids composition of fruits. Molecules. 2013;18(2): 1798-810.
  • [29] Chai WM, Huang Q, Lin MZ, Ou-Yang C, Huang WY, Wang YX, et al. Condensed tannins from Longan Bark as inhibitor of tyrosinase: structure, activity, and mechanism. J Agric Food Chem. 2018; 66(4): 908–917.
  • [30] Oetting WS, King RA. Molecular basis of oculocutaneous albinism. J Invest Dermatol. 1994; 103(5): 131–36.
  • [31] Rajasekhar A, Peddanna K, Vedasree N, Munirajeswari P, Nagaraju N, Badri KR, et al. Antidiabetic activity of root tubers of Asparagus gonoclados Baker in streptozotocin induced diabetic rats. J Ethnopharmacol. 2019; Oct 5(242): 112027.
  • [32] Jung M, Park M, Lee HC, Kang YH, Kang ES, Kim SK. Antidiabetic agents from medicinal plants. Curr Med Chem. 2006; 13(10): 1203–18.
Türk Doğa ve Fen Dergisi-Cover
  • ISSN: 2149-6366
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bingöl Üniversitesi Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

59.54 keV’lik Gama-ışınları Kullanılarak Ar ve O2’nin Compton Saçılma Ölçümleri

Ali GÜROL, Erdem ŞAKAR

Yemlik Bezelye ve Yemlik Bakla Bitki Kısımlarının Kalite Özellikleri ve Mineral Madde İçeriklerinin Belirlenmesi

Fatma AKBAY, Ömer Süha USLU, Adem EROL

Ekolojik Risk Değerlendirmede Ekotoksikogenomik Kavramı ve Verdiği Katkılar

Mehmet Kürşat ŞAHİN

Neoechinorhynchus rutili (Acanthocephala) ile Enfekte Capoeta trutta (Heckel,1843)’daki Değişikliklerin Biyokimyasal ve Histopatolojik Olarak İncelenmesi

Hayati YÜKSEL, Abdurrahman GÜL, Cebrahil TÜRK, Cüneyt ÇAĞLAYAN

GNP katkılı Hibrit PVB-TEOS Nanofiberlerin Üretimi ve Karakterizasyonu

Adem YAR

Phillyrea latifolia L: Farklı Ekstraktlarının Biyolojik Özelliklerinin İncelenmesi

Şengül UYSAL

Ana Ürün Koşullarında Çift Sıralı Ekim Yöntemlerine Göre Oluşturulan Farklı Bitki Sıklığının, Değişik Büyüme Özelliğine Sahip Yerfıstığı (Arachis hypogaea L.) Çeşitlerinin Bazı Önemli Tarımsal ve Kalite Özellikleri Üzerine Etkileri

Halil BAKAL

Farklı Akım Koşullarına Sahip Açık Kanal Akımının Sayısal Modellemesi

Oğuz ŞİMŞEK

BREEAM Sertifikalı Bir Eğitim Binasının Yapım Maliyetinin Geleneksel Yapım Maliyetiyle Karşılaştırılması

Tahir AKGÜL, İlknur BEŞKEN, Orhan KARABIYIKOĞLU

Ratlarda Kadmiyum Kaynaklı Mide Toksisitesine Karşı Karvakrol’un Etkileri

Fatih Mehmet KANDEMİR, Sefa KÜÇÜKLER, Selçuk ÖZDEMİR, Cüneyt ÇAĞLAYAN