Mayalar, asidik ortamda büyüyebilir ve ağır metalleri biriktirebilir. Bu çalışma, Candida türü mayaların sulu çözeltilerden tekli Cu(II) ve Ni(II) katyonlarını biriktirdiğini göstermiştir. Ağır metal iyonlarının, biyokütlelerin spesifik büyüme hızı ve büyüme periyodu boyunca metal iyonlarını giderimi üzerindeki etkisi, bir kesikli sistemde araştırılmıştır. Sabit sakaroz derişiminde, metal iyonu derişimi arttıkça, biyobirikim verimi azalmıştır. Hem spesifik büyüme hızı hem de biyokütle konsantrasyonu, tek başına Cu(II) iyonları içeren biyoakümülasyon ortamına kıyasla Ni(II) iyonları içeren biyoakümülasyon ortamında daha fazla inhibe edilmiştir. Mayaların maksimum özgül büyüme hızı ve doygunluk sabiti, Monod denkleminin çift-karşılıklı formu ile incelenmiştir. Candida lipolytica’nın metal giderim performansı Ni(II) derişiminin 25 mg/L’den 250 mg/L'ye çıkmasıyla % 81,68'den % 46,28'e düşmüştür. Candida biyokütleleri, ağır metallerin atık sulardan gideriminde alternatif bir yol olabilir ve yeni biyokütle üretimi için bir örnek oluşturabilir. Bu çalışma, Candida mayalarının, metal direnci ve verimli üretimleri nedeniyle ekonomik biyokütle olarak kullanılabileceğini göstermektedir. 

PRODUCTION OF Candida BIOMASSES FOR HEAVY METAL REMOVAL FROM WASTEWATERS

Yeasts can accumulate heavy metals and grow in acidic media. In the present study, it was shown that Candida yeasts in an aqueous solution accumulate single Cu(II) and Ni(II) cations. The effect of heavy metal ions on the specific growth rate of biomasses and the uptake of metal ions during the growth phase was investigated in a batch system. Bioaccumulation efficiency decreased with increasing metal ion concentrations at constant sucrose concentrations. Both the specific growth rate and the biomass concentration were more inhibited in the bioaccumulation media containing Ni(II) ions singly as compared with the bioaccumulation media containing Cu(II) ions singly. The maximum specific growth rate and the saturation constant of yeasts were examined with a double-reciprocal form of Monod equation. Metal uptake performance decreased from 81.68% to 46.28% with increasing Ni(II) concentration from 25 mg/L to 250 mg/L for Candida lipolytica. Candida biomasses may be an alternative way of removal of heavy metals from wastewaters and may constitute a sample to produce new biomass. The study showed that Candida yeasts can be used as economical biomass due to their metal resistance and efficient production.

___

  • 1. Açikel, U. & Alp, T. 2009. A study on the inhibition kinetics of bioaccumulation of Cu(II) and Ni(II) ions using Rhizopus delemar. Journal of Hazardous Materials, 168(2-3): 1449-1458. https://doi.org/10.1016/j.jhazmat.2009.03.040
  • 2. Aksu, Z. & Dönmez, G. 2000. The use of molasses in copper (II) containing wastewaters: effects on growth and copper (II) bioaccumulation properties of Kluyveromyces marxianus. Process Biochemistry, 36(5): 451-458. https://doi.org/10.1016/S0032-9592(00)00234-X
  • 3. Baysal, Z., Çinar, E., Bulut, Y., Alkan, H. & Dogru, M. 2009. Equilibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass. Journal of Hazardous Materials, 161(1): 62-67. https://doi.org/10.1016/j.jhazmat.2008.02.122
  • 4. Brady, D. & Duncan, J.R. 1994. Bioaccumulation of metal cations by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 41: 149-154. https://doi.org/10.1007/BF00166098
  • 5. Chen, S., Yin, H., Ye, J., Peng, H., Liu, Z., Dand, Z. & Chang, J. 2014. Influence of co-existed benzo[a]pyrene and copper on the cellular characteristics of Stenotrophomonas maltophilia during biodegradation and transformation. Bioresource Technology, 158: 181-187. https://doi.org/10.1016/j.biortech.2014.02.020
  • 6. Cottet, C., Ramirez-Tapias, Y.A., Delgado, J.F., de la Osa, O., Salvay, A.G. & Peltzer, M.A. 2020. Biobased Materials from Microbial Biomass and Its Derivatives. Materials, 13(6): 1263. https://doi.org/10.3390/ma13061263
  • 7. Dupont, C.L., Grass, G. & Rensing, C. 2011. Copper toxicity and the origin of bacterial resistance-New insights and applications. Metallomics, (3): 1109-1118. https://doi.org/10.1039/c1mt00107h
  • 8. Evirgen, O.A. & Sag Acikel, Y. 2014. Simultaneous copper bioaccumulation, growth and lipase production of Rhizopus delemar in molasses medium: optimisation of environmental conditions using RSM. Chemistry and Ecology, 30(1): 39-51. https://doi.org/10.1080/02757540.2013.827670
  • 9. Fadel M., Hassanein, N.M., Elshafei, M.M., Mostafa, A.H., Ahmed, M.A. & Khater, H.M. 2017. Biosorption of manganese from groundwater by biomass of Saccharomyces cerevisiae. HBRC Journal. 13(1): 106-113. https://doi.org/10.1016/j.hbrcj.2014.12.006
  • 10. Fashola, M.O., Ngole-Jeme, V.M. & Babalola, O.O. 2016. Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance. International Journal of Environmental Research and Public Health, (13): 1047. https://doi.org/10.3390/ijerph13111047
  • 11. Giner-Lamia, J., L´opez-Maury, L., Florencio, F.J. & Janssen, P.J. 2014. Global transcriptional profiles of the copper responses in the cyanobacterium synechocystis sp. PCC 6803. PLOS ONE, 9 (9): e108912. https://doi.org/10.1371/journal.pone.0108912
  • 12. Gönen, F. & Aksu, Z. 2008. Use of response surface methodology (RSM) in the evaluation of growth and copper(II) bioaccumulation properties of Candida utilis in molasses medium. Journal of Hazardous Materials, 154(1-3): 731-738. https://doi.org/10.1016/j.jhazmat.2007.10.086
  • 13. Gourdon, R., Bhende, S., Rus, E. & Sofer, S.S. 1990. Comparison of cadmium biosorption by Gram-positive and Gram-negative bacteria from activated sludge. Biotechnology Letters, 12: 839-842. https://doi.org/10.1007/BF01022606
  • 14. Honfi, K., Tálos, K., Kőnig-Péter, A., Kilár, F. & Pernyeszi, T. 2016. Copper(II) and Phenol Adsorption by Cell Surface Treated Candida tropicalis Cells in Aqueous Suspension. Water, Air & Soil Pollution, 227: 1-14. https://doi.org/10.1007/s11270-016-2751-0
  • 15. Javanbakht, V., Alavi, S.A. & Zilouei, H. 2013. Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Science and Technology, 69(9): 1775-1787. https://doi.org/10.2166/wst.2013.718
  • 16. Legorreta-Castañeda, A.J., Lucho-Constantino, C.A., Beltrán-Hernández, R.I., Coronel-Olivares, C. & Vázquez-Rodríguez, G.A. 2020. Biosorption of Water Pollutants by Fungal Pellets. Water, 12(4): 1155-1193. https://doi.org/10.3390/w12041155
  • 17. Liu, Y. 2007. Overview of some theoretical approaches for derivation of the Monod equation. Applied Microbiology and Biotechnology, 73: 1241-1250 https://doi.org/10.1007/s00253-006-0717-7
  • 18. Luk, C.H.J., Yip, J., Yuen, C.W.M., Pang, S.W., Lam, K.H. & Kan, C.W. 2017. Biosorption Performance of Encapsulated Candida krusei for the removal of Copper(II). Scientific Reports, 7: 1-9. https://doi.org/10.1038/s41598-017-02350-7
  • 19. Luna, J.M., Rufino, R.D. & Sarubbo, L.A. 2016. Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Safety and Environmental Protection, 102: 558-566. https://doi.org/10.1016/j.psep.2016.05.010
  • 20. Malik, A. 2004. Metal bioremediation through growing cells. Environment International, 30(2): 261-78. https://doi.org/10.1016/j.envint.2003.08.001
  • 21. Modak, J.M. & Natarajan, K.A. 1995. Biosorption of metals using nonliving biomass-A review. Mining, Metallurgy & Exploration, 12: 189-196. https://doi.org/10.1007/BF03403102
  • 22. Monod, J. 1949. The growth of bacterial cultures. Annual Reviews in Microbiology, 3(1): 371-394. https://mcb.berkeley.edu/labs/garcia/sites/mcb.berkeley.edu.labs.garcia/files/Teaching/2017-MCB137/Monod1949.pdf (Date accessed: 22.11.2020)
  • 23. Pawan, K.R. & Devi, R. 2018. Heavy metal tolerance and adaptability assessment of indigenous filamentous fungi isolated from industrial wastewater and sludge samples. Beni-Suef University Journal of Basic and Applied Sciences, 7(4): 688-694. https://doi.org/10.1016/j.bjbas.2018.08.001
  • 24. Podder, M.S. & Majumder, C.B. 2019. Bacteria immobilization on neem leaves/MnFe2O4 composite surface for removal of As(III) and As(V) from wastewater. Arabian Journal of Chemistry, 12: 3263-3288. https://doi.org/10.1016/j.arabjc.2015.08.025
  • 25. Raspor P. & Zupan J. 2006. Yeasts in Extreme Environments. pp. 371-372. In: Péter G.& Rosa C.A. (eds). Biodiversity and Ecophysiology of Yeasts. Springer-Verlang, Berlin, 580 pp. https://doi.org/10.1007/3-540-30985-3_15
  • 26. Razack, S.A., Velayutham, V. & Thangavelu, V. 2013. Medium optimization for the production of exopolysaccharide by Bacillus subtilis using synthetic sources and agro wastes. Turkish Journal of Biology, 37: 280-288. https://doi.org/10.3906/biy-1206-50
  • 27. Redha, A.A. 2020. Removal of heavy metals from aqueous media by biosorption. Arab Journal of Basic and Applied Sciences, 27(1): 183-193. https://doi.org/10.1080/25765299.2020.1756177
  • 28. Rehman, A. & Anjum, M.S. 2011. Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: glutathione as detoxifying agent. Environmental Monitoring and Assessment, 174: 585-595. https://doi.org/10.1007/s10661-010-1480-x
  • 29. Rehman, A. & Anjum, M.S. 2010. Cadmium Uptake by Yeast, Candida tropicalis, Isolated from Industrial Effluents and Its Potential Use in Wastewater Clean-Up Operations. Water, Air and Soil Pollution, 205: 149-159. https://doi.org/10.1007/s11270-009-0062-4
  • 30. Şengör, S.S., Barua, S., Gikas, P., Ginn, T.R., Peyton, B., Sani, R.K., & Spycher, N.F. 2009. Influence Of Heavy Metals On Microbial Growth Kinetics Including Lag Time: Mathematical Modeling And Experimental Verification. Environmental Toxicology and Chemistry, 28: 2020-2029. https://doi.org/10.1897/08-273.1
  • 31. Sandell, E.B. 1950. Colorimetric Determination of Traces of Metals Volume III. pp. 304-475. In: Clarke, B.L. & Kolthoff, I.M. (eds). Chemical Analysis A Series of Monographs on Analytical Chemistry And Its Applications. Interscience Publishers INC, London, 688 pp.
  • 32. Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K. & Sutton, D. J. 2012. Heavy metal toxicity and the environment. Experientia Supplementum, 101: 133-164. https://doi.org/10.1007/978-3-7643-8340-4_6
  • 33. Tripathi, A, & Ranjan, M.R. 2015. Heavy Metal Removal from Wastewater Using Low Cost Adsorbents. Journal of Bioremediation & Biodegration, 6: 315-320. http://dx.doi.org/10.4172/2155-6199.1000315
  • 34. Volland, S., Bayer, E., Baumgartner, V., Andosch, A., Lütz, C., Sima, E. & Lütz-Meindl, U. 2014. Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. Journal of Plant Physiology, 171(2): 154-163. https://doi.org/10.1016/j.jplph.2013.10.002
  • 35. Waldron, K.J. & Robinson, N.J. 2009. How do bacterial cells ensure that metalloproteins get the correct metal? Nature Reviews Microbiology, 7: 25-35. https://doi.org/10.1038/nrmicro2057
  • 36. Wołowiec, M., Komorowska-Kaufman, M., Pruss, A., Rzepa, G. & Bajda, T. 2019. Removal of Heavy Metals and Metalloids from Water Using Drinking Water Treatment Residuals as Adsorbents: A Review. Minerals, 9(8): 487-504. https://doi.org/10.3390/min9080487
  • 37. Zha, F., Wang, H., Xu, L., Yang, C., Kang, B., Chu, C., Deng, Y. & Tan, X. 2020. Initial feasibility study in adsorption capacity and mechanism of soda residue on lead (II)-contaminated soil in solidification/stabilization technology. Environmental Earth Sciences, 79: 1-12. https://doi.org/10.1007/s12665-020-08990-9