Power series solution of non-linear first order differential equation systems

Bu makalede, lineer olmayan adi diferansiyel denklemlerin çözümü için kuvvet serisini kullandık. Nümerik yoldan elde edilen sonuçlarla, teorik yoldan elde edilen sonuçlar karşılaştırıldı ve lineer olmayan differansiyel denklem sistemlerinde metodun etkinliğini göstermek için örnekler verildi. Nümerik hesaplamalarda MAPLE bilgisayar cebiri sistemleri kullanıldı (FRANK, 1996).

Lineer olmayan birinci mertebeden denklem sistemlerinin kuvvet serisiyle çözümü

In this paper, we use power series method to solve non-linear ordinary differential equations Theoretical considerations has been discussed and some examples were presented to show the ability of the method for non-linear systems of differential equations. We use MAPLE computer algebra systems for numerical calculations (FRANK, 1996).

___

  • 1.AMODIO P, MAZZIA F, Numerical solution of differential-algebraic equations and Computation of consistent initial/boundary conditions. Journal of Computational and Applied Mathematics. 87, 135-146,1997.
  • 2.ASCHER U.M., PETZOLD L.R., Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Philadelphia: society for industrial and Applied Mathematics, 1998.
  • 3.BRENAN K E, CAMPBELL S L, PETZOLD L R, Numerical solution of Initial-value problems in Differential-Algebraic Equations, North-Holland, Amsterdam, 1989.
  • 4.CORLISS G, CHANG Y F, Solving Ordinary Differential Equations Using Taylor Series, ACM Trans. Math. Soft. 8,114-144,1982.
  • 5.ÇELİK E, KARADUMAN E, BAYRAM M, Numerical Method to Solve Chemical Differential-Algebraic Equations. International Journal of Quantum Chemistry, 89(5), 447-451, 2002.
  • 6.ÇELİK E, BAYRAM M, Arbitrary Order Numerical Method for Solving Differetial-Algebraic Equation by Pade Series. Applied Mathematics and Computational, 57-65, 2003.
  • 7.FRANK G, MAPLE V:CRC Press Inc., 2000 Corporate Blvd., N.W., Boca Raton, Florida 33431, 1996.
  • 8.HAIRER E, WANNER G, Solving Ordinary Differential Equations II: Stiff and Differential-Algebreis Problems, Springer-Verlag, 1991.
  • 9.HENRICI P, Applied Computational Complex Analysis, Vol. 1, Chap. 1, John Wiely & Sons, New York, 1974.
  • 10.HULL TE, ENRIGHT WH, FELLEN BM, SEDGWICK AE, Comparing numerical methods for ordinary differential equations, SIAM J, Numerical Anal. 9,603,1972.
  • 11.PRESS WH, FLANNERY BP, TEUKOLSKY SA,VETTERLING WT, Numerical Recipes, Cambridge University Press, Cambridge, 1988.
Trakya Üniversitesi Fen Bilimleri Dergisi-Cover
  • ISSN: 1305-6468
  • Yayın Aralığı: 1
  • Başlangıç: 2000
  • Yayıncı: -
Sayıdaki Diğer Makaleler

ÇELTİKTE (Oryza sativa L.) ERKEN GENERASYONLARDA DANE VERİMİ VE VERİM KOMPONENTLERİ İÇİN SELEKSİYON

Halil SÜREK, Necmi BEŞER

An alternative approach for analysis of traditional shopping spaces and a case study on Balikesir

GAYE BİROL

PARALEL EKSENLERE DÖNME EKLEYEREK HYPOCYCLOİD YÜZEYLERİN TALAŞLI İŞLENMESİ: BÖLÜM 1: TAKIM GÖVDESİNİN GEOMETRİSİ

Jordan MAXIMOV, Hristo HRISTOV

EKMEKLİK BUĞDAYDA EMBRİYO KARARMASINA NEDEN OLAN FUNGUSLARIN TESPİTİ, VE HASTALIĞIN ÇİMLENME VE FİDE ÇIKIŞ GÜCÜ ÜZERİNE ETKİSİ

Nuray ÖZER

PARALEL EKSENLERE DÖNME EKLEYEREK HYPOCYCLOİD YÜZEYLERİN TALAŞLI İŞLENMESİ: BÖLÜM 2: METODUN KİNEMATİĞİ E MÜMKÜN OLAN UYGULAMA ALANLARI

Jordan MAXIMOV, Hristo HRISTOV

p= $(2q-1)^2-2$ asalı için Q $(sqrt{p})$ reel kuadratik sayı cisminin sınıf sayısı ve $x^2-py^2=mp q$ pell denkleminin çözülebilirliği

Ayten PEKİN

Lygaeus equestris (L.) (HETEROPTERA: LYGAEIDAE)’İN BAZI BİYOLOJİK ÖZELLİKLERİ

Hakan ZOBAR, Müjgan KIVAN

LİNEER OLMAYAN BİRİNCİ MERTEBEDEN DİFFERENTİAL DENKLEM SİSTEMLERİNİN KUVVET SERİSİYLE ÇÖZÜMÜ

Nuran GÜZEL, Mustafa BAYRAM

PİLİÇLERİN BUĞDAY KÖKENLİ YİYECEKLERİNE ENZİM EKLENMESİNİN ETKİLERİ

Mária ANGELOVICOVÁ, Ján MENDEL, Marek ANGELOVIC, Miroslava KACÁNIOVÁ

SLOVAKYA’NIN ÇEŞİTLİ LOKALİTELERİNDEKİ CEVİZ AĞAÇLARINDAKİ (JUGLANS REGİA L.) MİKROPARAZİTİK FUNGUSLAR VE YAYILMALARI

Gabriela JUHÁSOVÁ, Helena IVANOVÁ, Jozef SPIŠÁK