Steady-State Electron Drift Velocity at Different Temperatures in AlXGa1-XN and InXGa1-XN Alloys: Monte Carlo Simulation

Steady-State Electron Drift Velocity at Different Temperatures in AlXGa1-XN and InXGa1-XN Alloys: Monte Carlo Simulation

The AlxGa1-xN and InxGa1-xN alloys are widely used in optoelectronic devices operating in the visible and ultraviolet. They are also attractive for high power, high temperature and high frequency electronic applications. The specific properties of these materials are the source of the charges induced by the effects of spontaneous and piezo-electric polarizations at the interfaces of quantum wells and super lattices. They are used in heterojunction field effect transistors HFET, modulated doping field effect transistors MODFET, and heterojunction bipolar transistors HBT. We study AlxGa1-xN and InxGa1-xN in the cubic phases because they would have better electronic and optical performances than in their hexagonal phases. We first present GaN, AlN, InN and their alloys AlxGa1-xN and InxGa1-xN. In the second section; we describe the main steps of Monte Carlo simulation method that we use. In the third section; we calculate steady-state electron drift velocity versus electric field for different temperatures and various molar fractions x. We consider the acoustic, piezo-electric, ionized impurities and polar optical phonon scatterings. We compare our results with published work and are in satisfactory agreement

___

  • G. Roosen. (2003). Materials for Optoelectronics, Treaty Series Optoelectronics. Vol. 7, Hermes Science Publications.
  • Fabrice Enjalbert (2004). Etude des hétérostructures semi-conductrices III-nitrures et application au laser UV pompé par cathode à micropointes. Ph.D. Thesis, University of Joseph Fourier, Grenoble 1, France.
  • S. K. Pugh, D. J. Dugdale, S. Brand & R.A. Abram (1999). Electronic structure calculation on nitride semiconductors. Semicond. Technol, 14, 23-31.
  • Xu et al. (2000). Anomalous strains in the cubic phase GaN films grown on GaAs (001) by metalogranic chemical vapour deposition. J. Appl. Phys. 88(6), 3762-3764.
  • R. C. Powell, N.E. Lee, Y.W. Kim & J. Greene. (1993). Heteroepetaxial wurtzite and zinc blend structure GaN grown by reactive ion molecular beam epitaxy, growth kinetic microstructure and properties. J. Appl. Phys. 73 (1), 189-204.
  • Martinez Guerrero & Esteban. (2002). Elaboration en épitaxie par jets moléculaires des nitrures d’éléments III en phase cubique. National Institute of Applied Sciences, Lyon, France.
  • François Dessenne. (1998). Etude thermique et optimisation des transistors à effet de champ de la filière InP et de la filière GaN. Ph.D. Thesis, University of Lille 1, France.
  • I. Petrov, E. Majob, R.C. Powell & J.E. Greene. (1992). Synthesis of metastable epitaxial zinc blend structure AlN by solid reaction. J. Appl. phys, 60(20), 2491-2493.
  • Okumaru et al. (1998). Growth of cubic III-nitrides by gas source MBE using atomic nitrogen plasma: GaN, AlGaN and AlN. 198, 390-394.
  • Thobel. (1992). Simulation Monte Carlo du transport électronique et des phénomènes de diffusion dans les systèmes à base de semi-conducteurs III-V. University of Lille 1, France.
  • S. Galden. (1992). Etude du transistor bipolaire à double hétérojonction Si/SiGe/Si par la simulation Monte Carlo. University of south Paris.
  • O. Mouton, J. L. Thobel, & R. Fauquemberg. (1993). Monte Carlo simulation of high-field electron transport in GaAs using an analytical band structure model. J. Appl. Phys, 10-74.
  • A.F.M. Anwar, Senior Member, Shangli Wu, & Richard T. (2001). Temperature dependent transport properties in GaN, AlxGa1-xN, and InxGa1-xN semiconductors. IEEE Transactions on Electron Devices, 48(3), 567-572.
  • M. Farahmand & F. Brennan. (2001). Monte Carlo Simulation of Electron Transport in the III-Nitride Wurtzite Phase Materials System: Binaries and Ternaries. IEEE Trans. Electron Devices, 48(3).
TOJSAT-Cover
  • ISSN: 2146-7390
  • Başlangıç: 2011
  • Yayıncı: The association of science, education and technology