The relationship between epicardial fat volume and myocardial perfusion scintigraphy findings

The relationship between epicardial fat volume and myocardial perfusion scintigraphy findings

Objectives: We investigated the epicardial fat volume (EFV) between patients with normal perfusion and reversible perfusion abnormalities in the myocardial perfusion scintigraphy (MPS) in patients with suspected coronary artery disease (CAD). In addition, we aimed to investigate the relationship of automated analysis parameters obtained in the MPS SPECT examination with EFV. Methods: A total of 295 patients (182 F, 113 M) who underwent MPS in our unit with the suspicion of CAD in the last 1 year and who had a recent thorax CT examination were included. EFV measurement in CT scans was done with Invesalius software. MPS was performed in all patients with a one-day stress and rest imaging protocol. In the stress study, imaging was performed approximately 30-45 minutes after intravenous injection of ~12 mCi Tc99m Sestamibi. Rest study imaging was performed approximately 30-60 minutes after intravenous injection of ~25 mCi Tc99m Sestamibi. Results: Median EFV was 53.00 ml (interquartile range: 23 ml, range 17-238 ml) in patients with normal MPS, and 62.00 ml in patients with myocardial ischemia on scintigraphy (interquartile range: 53 ml, range: 25-207 ml). The EFV value was statistically significantly higher in patients with reversible ischemia on MPS compared to patients with normal scintigraphy findings (p < 0.001). There was a statistically significant, low, and positive correlation between EFV and summed difference score (SDS) values (p = 0.002, r = 0.178). Conclusions: The EFV value was significantly higher in patients with reversible ischemia on MPS compared to patients with normal scintigraphy findings. Also there was a statistically low and positive correlation between EFV and SDS values. The automatic calculation of the EFV value during this examination may be a good additional parameter to detect the presence of ischemia.

___

  • 1. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016;388:1459-544.
  • 2. Milanese G, Silva M, Ledda RE, Goldoni M, Nayak S, Bruno L, et al. Validity of epicardial fat volume as biomarker of coronary artery disease in symptomatic individuals: results from the ALTER-BIO registry. Int J Cardiol 2020;314:20-4.
  • 3. Konishi M, Sugiyama S, Sato Y, Oshima S, Sugamura K, Nozaki T, et al. Pericardial fat inflammation correlates with coronary artery disease. Atherosclerosis 2010;213:649-55.
  • 4. Iacobellis G, Sharma AM. Epicardial adipose tissue as new cardio-metabolic risk marker and potential therapeutic target in the metabolic syndrome. Curr Pharm Des 2007;13:2180-4.
  • 5 Sabharwal NK, Lahiri A. Role of myocardial perfusion imaging for risk stratification in suspected or known coronary artery disease. Heart 2003;89:1291-7.
  • 6. Kilambi Y, Halanaik D, Ananthakrishnan R, Mishra J. Comparison of epicardial fat volume between patients with normal perfusion and reversible perfusion abnormalities on myocardial perfusion imaging. Indian J Nucl Med 2021;36:1-6.
  • 7. Khawaja T, Greer C, Thadani SR, Kato TS, Bhatia K, Shimbo D, et al. Increased regional epicardial fat volume associated with reversible myocardial ischemia in patients with suspected coronary artery disease. J Nucl Cardiol 2015;22:325-33.
  • 8. Tamarappoo B, Dey D, Shmilovich H, Nakazato R, Gransar H, Cheng VY, et al. Increased pericardial fat volume measured from noncontrast CT predicts myocardial ischemia by SPECT. JACC Cardiovasc Imaging 2010;3:1104-12.
  • 9. Janik M, Hartlage G, Alexopoulos N, Mirzoyev Z, McLean DS, Arepalli CD, et al. Epicardial adipose tissue volume and coronary artery calcium to predict myocardial ischemia on positron emission tomography-computed tomography studies. J Nucl Cardiol 2010;17:841-7.
  • 10. Otaki Y, Hell M, Slomka PJ, Schuhbaeck A, Gransar H, Huber B, et al. Relationship of epicardial fat volume from noncontrast CT with impaired myocardial flow reserve by positron emission tomography. J Cardiovasc Comput Tomogr 2015;9:303-9.
  • 11. Yu W, Liu B, Zhang F, Wang J, Shao X, Yang X, et al. Association of epicardial fat volume with increased risk of obstructive coronary artery disease in Chinese patients with suspected coronary artery disease. J Am Heart Assoc 2021;10:e018080.
  • 12. Sun DF, Kangaharan N, Costello B, Nicholls SJ, Emdin CA, Tse R, et al. Epicardial and subcutaneous adipose tissue in indigenous and non-indigenous individuals: implications for cardiometabolic diseases. Obes Res Clin Pract 2020;14:99-102.
  • 13. Moharram MA, Aitken-Buck HM, Reijers R, van Hout I, Williams MJA, Jones PP, et al. Correlation between epicardial adipose tissue and body mass index in New Zealand ethnic populations. NZ Med J 2020;133:22-32.
The European Research Journal-Cover
  • ISSN: 2149-3189
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: Prusa Medikal Yayıncılık Limited Şirketi
Sayıdaki Diğer Makaleler

Is osteophyte located in the inferior of the intermeniscal ligament an indication for the surgical treatment of degenerative meniscal tear?

Emre Anıl ÖZBEK, Mehmet Can GEZER, Mustafa Onur KARACA, Mustafa KAVAK, Ramazan AKMEŞE

Radiosensitivity of glioblastoma multiforme and astrocytic cell lines in cell signalling aspects

Duygu ÇALIK KOCATÜRK, Berrin OZDİL, Yasemin ADALI, Sinan HOCA, Serra KAMER, Gülperi ÖKTEM, Ayşegül UYSAL, Hüseyin AKTUĞ

Y chromosome polymorphism in Turkish patients with reproductive problems: a genetic centre experience

Emine İkbal ATLI, Çisem MAİL, Hakan GURKAN, Sinem YALÇINTEPE, Selma DEMİR, Engin ATLI

An examination of the burnout levels of healthcare professionals according to some variables during the COVID-19 pandemic

Zihniye OKRAY, Güley BİLGİ ABATAY

Neutrophil to lymphocyte ratio may be used as a predictor in tendinopathy

İsmail KAYA, Aydan ÖRSÇELİK, İlker SOLMAZ, Burak KARAASLAN, Esra Şafak YILMAZ

Should encountering atypia of undetermined significance / follicular lesion of undetermined significance after thyroid biopsy lead to the operation?

Bilgin ÇELEBİ, Halil Afşin TAŞDELEN, Eray KURNAZ

Associating craniofacial morphometry determined by photo analysis with somatotype in healthy young individuals

Yusuf SEÇGİN, Şeyma TOY, Deniz ŞENOL, Zülal ÖNER

Analysis of under-five mortality by diseases in countries with different levels of development: a comparative analysis

Muhammed SÜTÇÜ, Pınar GÜNER, Nur Şebnem ERSÖZ

C-reactive protein to albumin ratio in atrial fibrillation

Sabri ABUŞ

Musculoskeletal pain, kinesiophobia, and quality of life in obese patients

Sabriye ERCAN, Furkan KÜÇÜK, Aydan ÖRSÇELİK, Cem ÇETİN