KOMPOZİT ÜRETİMİNDE TAKVİYE MALZEMESİ OLARAK KULLANILABİLECEK ÇEŞİTLİ HAYVANSAL LİFLERE UYGULANAN YÜZEY MODİFİKASYONLARININ LİF ÖZELLİKLERİNE ETKİSİ

Günümüzde doğal kaynaklardan elde edilen liflerin kompozitlerde takviye malzemesi olarak kullanıldığı çalışmalar çeşitlenerek artış göstermektedir. Bu amaçla yaygın olarak kullanılan selülozik liflerin yanı sıra hafifliği, yüksek esneme ve izolasyon kabiliyetleri ve sürdürülebilir olması gibi özellikleri nedeni ile protein esaslı lifler de alternatif takviye malzemesi olarak kullanılmaktadır. Kompozit üretiminde matris-takviye malzemesi uyumluluğunu artırabilmek için bileşenlere genellikle yüzey modifikasyon işlemleri yapılmaktadır. Bu çalışmada kompozit malzemelerde takviye malzemesi olarak kullanılabilecek yün, tiftik, kaşmir ve deve liflerinin alkali ve hidrojen peroksit ile modifikasyonu yapılmış ve bu modifikasyon işlemlerinin liflere olan etkisi analiz edilmiştir. Yüzey işlemi görmemiş ve modifiye edilmiş liflerin kimyasal yapıları Fourier Dönüşümlü Kızılötesi Spektroskopisi (FTIR), içyapıları X-Işını Difraktometresi (XRD) ve morfolojik özellikleri ise Taramalı Elektron Mikroskobu (SEM) ile incelenmiştir. Ayrıca liflerin nem alımındaki değişim de belirlenmiştir. Yapılan analiz sonuçları incelendiğinde, modifikasyon işlemlerinin liflerin fonksiyonel gruplarında özellikle amid ve sülfür içeren grupları gösteren absorpsiyon piklerinin şiddetlerinde değişim meydana getirdiği tespit edilmiştir. Hidrojen peroksit muamelesi sonrası disülfür bağlarının okside olduğunu gösteren yeni pikler meydana gelmiştir. Modifikasyon işlemleri sonrası lifler benzer difraksiyon eğrileri vermesine rağmen, kristal yüzeylerini gösteren piklerin şiddetleri değişmiştir. Alkali ve hidrojen peroksit işlemleri sonrası lif yüzeyinden safsızlıkların kısmen uzaklaştığı, pulcuk tabakasının da modifikasyondan etkilendiği belirlenmiştir. Modifikasyon işlemleri sonrası lifin kütikül tabakasında meydana gelen değişim ile birlikte liflerin hidrofilliği artış göstermiştir.

THE EFFECT OF SURFACE TREATMENTS ON PROPERTIES OF VARIOUS ANIMAL FIBERS AS REINFORCEMENT MATERIAL IN COMPOSITES

Recently, there has been a rapid growth in research on natural fibers as reinforcement materials in composites. Besides the commonly used cellulosic fibers, protein-based fibers known with their lightness, high elasticity, isolation capability and sustainability, can also be used as an alternative reinforcement material. In composite production, surface modifications are generally implemented in order to increase the compatibility of matrix-filler. In this study, wool, mohair, cashmere and camel fibers were modified with alkali and hydrogen peroxide and the effect of the modifications on fiber was analyzed. The chemical structure of modified and unmodified fibers was investigated by Fourier Transform Infrared Spectroscopy (FTIR), fine structure by X-Ray Diffraction (XRD) and morphological properties by Scanning Electron Microscopy (SEM). Moreover, the moisture content of the fibers was determined. According to obtained results, it is determined that the modification processes changed the intensities of the peaks which are attributed to the functional groups especially for the groups amide and sulphur. After the modification with hydrogen peroxide, new groups were introduced which indicates the oxidation of the disulphide bonds. The intensities of the peaks which are attributed to the crystalline surfaces changed although fibers gave the typical diffraction curves. However, tensile properties of the fibers remained similar to each other. The surface impurities were partially removed and also the scales on the fiber surface were affected with the modifications. After the modifications, the hydrophilicity of the fibers increased with the changes in the cuticle layer.

___

  • Yüce, İ. (2015), Kıl Kökenli Lüks Lifleri Ayırt Etme Yöntemleri, International Journal of Science Culture and Sport, 3, ISSN: 2148-1148, DOI: 10.14486/IJSCS337.
  • Harmancıoğlu, M. (1974), Lif Teknolojisi (Yün ve deri ürünü diğer lifler), Ege Üniversitesi Ziraat Fakültesi Yayınları, No:224, Bornova-İZMİR.
  • Atav, R. (2009), Yün Dışındaki Bazı Önemli Protein Liflerinin Boyanma Özelliklerinin Geliştirilmesi, Doktora tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Yıldız, D., Gültekin, M.E., Bolat, D. (2004), Ankara Keçisi Tiftiğinin Taramalı Elektron Mikroskobu ile İncelenmesi, Ankara Üniversitesi Veterinerlik Fakültesi Dergisi, 51, 225-227.
  • Erdoğan, Ü. (2015), Yün lifleri için alternatif ağartma yöntemlerinin araştırılması, Yüksek lisans tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Isparta.
  • Dyer, J., Grosvenor, A. (2012), Protein Fibre Surface Modification, Natural Dyes, edited by Kumbasar, P.A., DOI: 10.5772/22601.
  • Kutlu, B., Akşit, A., Mutlu, M. (2010), Surface Modification of Textiles by Glow Discharge Technique: Part II: Low Frequency Plasma Treatment of Wool Fabrics with Acrylic Acid, Journal of Applied Polymer Science, 116(3), 1545-1551.
  • Wang, X., Shen, X., Xu, W. (2012), Effect of Hydrogen Peroxide Treatment on The Properties of Wool Fabric, Applied Surface Science, 258, 10012-10016.
  • Tonetti, C., Varesano, A., Vineis, C., Mazzuchetti, G. (2015), Differential Scanning Calorimetry for The Identification of Animal Hair Fibres, Journal of Thermal Analysis and Calorimetry, 119:1445–1451.
  • Thakur, V.K., Thakur, M.K. (2014), Processing and Characterization of Natural Cellulose Fibers/Thermoset Polymer Composites, Carbohydrate Polymers, 109, 102-117.
  • Ding, W.D., Jahani, D., Chang, E., Alemdar, A, Park, C.B., Sain, M. (2016), Development of PLA/cellulosic fiber composite foams using injection molding: Crystallization and foaming behaviors, Composites Part A: Applied Science and Manufacturing, 83, 130-139.
  • Shah, P., Prajapati, R., Singh, P. (2017), Enrichment of Mechanical Properties of Biodegradable Composites Containing Waste Cellulose Fiber and Thermoplastic Starch, European Journal of Advances in Engineering and Technology, 4 (4), 282-286.
  • Shubhra, Q.T.H., Alam, A.K.M.M., Gafur, M.A., Shamsuddin, S.M., Khan, M.A., Saha, M., Saha, D., Quaiyyum, M.A., Khan, J.A., Ashaduzzaman, M. (2010), Characterization of Plant and Animal Based Natural Fibers Reinforced Polypropylene Composites and Their Comparative Study, Fibers and Polymers, 11(5), 725-731.
  • Zhan, M., Wool, R.P., Xiao, J.Q. (2011), Electrical Properties of Chicken Feather Fiber Reinforced Epoxy Composites, Composites Part A: Applied Science and Manufacturing, 42(3), 229-233.
  • Ramamoorthy, S.K., Skrifvars, M., Persson, A. (2015), A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers, Polymer Sciences, 55, 107-162.
  • Özeş, Ç., Taşkın, A.E. (2016), Jüt Kumaş ve Yün Keçe Esaslı Kompozitlerin Darbe Davranışının Belirlenmesi, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 18, 3, 54, 513-520.
  • Bullions, P.A., Gillespie, R.A., Price-O’Brien, J., Loos, A.C. (2004), The Effect of Maleic Anhydride Modified Polypropylene on The Mechanical Properties of Feathers Fiber, Kraft Pulp, Polypropylene Composites, Journal of Appled Polymer Science, 92, 3771–3783.
  • Barone, J.R., Schmidt, W.F. (2005a), Polyethylene Reinforced with Keratin Fibers Obtained from Chicken Feathers, Composite Science Technology, 65, 173-181.
  • Barone, J.R., Schmidt, W.F., Liebner, C.F.E. (2005b), Compounding and Molding of Polyethyelene Composites Reinforced with Keratin Feather Fiber, Composite Science Technology, 65, 683–692.
  • Huda, S., Yang, Y. (2008), Composites from Ground Chicken Quill and Polypropylene. Composite Science Technology, 68, 790–798.
  • Blicblau, A.S., Coutts, R.S.P., Sims, A. (1997), Novel Composites Utilizing Raw Wool and Polyester Resin, Journal of Materials Science Letters, 16(17), 1417–1419.
  • Conzatti, L., Giunco, F., Stagnaro, P., Capobianco, M., Castellano, M., Marsano, E. (2012), Polyester Based Biocomposites Containing Wool Fibres, Composites Part A: Applied Science and Manufacturing, 43(7), 1113–1119.
  • Wang, X., Cao, G., Xu, W. (2009), Improving the Hydrophilic Properties of Wool Fabrics via Corona Discharge and Hydrogen Peroxide Treatment, Journal of Applied Polymer Science, 112(4).
  • Xu, W., Ke, G., Wu, J., Wang, X. (2006), Modification of Wool Fiber Using Steam Explosion, European Polymer Journal, 42, 2168-2173.
  • Bernardino, N.D., de Faria, D.L.A., Negron, A.C.V. (2015), Applications of Raman Spectroscopy in Archaeometry: An Investigation of Pre-Columbian Peruvian Textiles, Journal of Archeological science: reports, 4, 23-31.
  • Xu, W., Cui, W., Li, W., Guo, W. (2003), Development and Characterizations of Super-Fine Wool Powder, Powder Technology, 140, 136.
  • Wang, X., Xu, W., Wang, X. (2008), Characterization of Hot-Pressed Films from Superfine Wool Powder, Journal of Applied Polymer Science, 108 (5), 2852.
  • Lipp-Symonowicz, B., Sztajnowski, S., Kułak, A. (2012), IR Spectroscopy as a Possible Method of Analysing Fibre Structures and Their Changes Under Various Impacts, Infrared radiation, edited by Vasyl Morozhenko, ISBN 978-953-51-0060-7.
  • Demir, A., Arık, B., Ozdogan, E., Seventekin, N. (2010), The Comparison of the Effect of Enzyme, Peroxide, Plasma and Chitosan Processes on Wool Fabrics and Evaluation for Antimicrobial Activity, Fibers and Polymers, 11(7), 989-995.
  • Montazer, M., Pakdel, E., Moghadam, M.B. (2011), The Role of Nano Colloid of TiO2 and Butane Tetra Carboxylic Acid on The Alkali Solubility and Hydrophilicity of Proteinous Fibers, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 375, 1– 3, 1-11.
  • Eagleson, M. (1993), Concise Encyclopedia Chemistry. Walter de Gruyter, Berlin, 1993.
  • Huang, L.K., Sun, G., (2003), Durable and Oxygen Bleach Rechargeable Antimicrobial Cellulose: Sodium Perborate as An Activating and Recharging Agent, Industrial & Engineering Chemistry Research, 42, 5417–5422.
  • Zeronian, S. H., Inglesby, M. K. (1995), Bleaching of Cellulose by Hydrogen Peroxide. Cellulose, 2, 265-272.
  • Cardamone, J.M., Yao, J., Nunez, A. (2004), Controlling Shrinkage in Wool Fabrics: Effective Hydrogen Peroxide Systems, Textile Research Journal, 74(10), 887-898.
  • Wang, Q., Wang, P., Fan, X., Cui, L., Zhao, X., Gao, X. (2009), A Comparative Study on Wool Bio-antifelting Based on Different Chemical Pretreatments, Fibers and Polymers, 10(5), 724-730.
  • Schroder, M., Schweitzer, M., Lenting, H.B.M., Guebitz, G.M. (2004), Chemical Modification of Proteases for Wool Cuticle Scale Removal, Biocatalysis and biotransformation, 22(5-6), 299-305.
  • Kan, C.W. (2007), Surface Morphological Study of Low Temperature Plasma Treated Wool – A Time Dependence Study, Modern Research and Educational Topics in Microscopy, Formatex, 683-689.
  • Yuan, J., Wang, Q., Fan, X. (2010), Dyeing behaviors of ionic liquid treated wool, Journal of Applied Polymer Science, 117(4), 2278-2283.
  • Zhang, R., Wang, A. (2015), Modification of Wool by Air Plasma and Enzymes as a Cleaner and Environmentally Friendly Process, Journal of Cleaner Production, 87, 961-965.
  • Hsieh, S.H., Huang, Z.K., Huang, Z.Z., Tseng A.Z. (2004), Antimicrobial and Physical Properties of Woolen Fabrics Cured with Citric Acid and Chitosan, Journal of Applied Polymer Science, 94(5), 1999-2007.
  • Morris, C.E., Morris, N.M., Trask-Morrell, B.J. (1992), Variation in Solubility and Crystal Form of Meso-1,2,3,4-Butane Tetra Carboxylic Acid, Industrial & Engineering Chemistry Research, 31, 1201-1203.
  • Bahi, A., Jones, J.T., Carr, C.M., Ulijin, R.V., Shao, J. (2004), Surface Characterization of Chemically Modified Wool, Textile Research Journal, 77, 937-945.
  • Kodama, M., Karino, I., Kuramoto, K. (1988), Polar-polar Interaction and Boundary Phase Structure Between Reinforcement and Matrix in A Polymer Composite, Polymer-Plastics Technology and Engineering, 27(1), 127-153.
  • Monier, M., Ayad, D.M., Sarhan, A.A. (2010), Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers, Journal of Hazardous Materials, 176, 1-3, 348-355.
  • Shavandi, A., El-Din A Bekhit, A., Carne, A., Bekhit, A. (2014), Evaluation of Keratin Extraction from Wool by Chemical Methods for Bio-Polymer Application, Bioactive and Compatible Polymers, Bioactive and compatible polymers, DOI: 10.1177/ 0883911516662069, 1-15.
  • Ju, K.H., Eun, C.D., Chul, U.I. (2013), Effect of Processing Conditions on the Homogeneity of Partially Degummed Silk Evaluated by FTIR Spectroscopy, International Journal of Industrial Entomology, 26(1), 54-60.
  • Mengüç, G.S., Özdil, N. (2014), Özel Hayvansal Lifler, Teknolojik Araştırmalar, 8(2), 30-47.
  • Wangxi, Z., Jie, L., Gang, W. (2003), Evolution of Structure and Properties of PAN Precursors During Their Conversion to Carbon Fibers, Carbon, 41(14), 2805-2812.
  • Alemdar, A. ve Sain, M. (2008a), Isolation and Characterization of Nanofibers from Agricultural Residues – Wheat Straw and Soy Hulls, Bioresource Technology, 99(6), 1664-1671.
  • Alemdar, A. ve Sain, M. (2008b), Biocomposites from Wheat Straw Nanofibers: Morphology, Thermal and Mechanical Properties, Composites Science and Technology, 68(2), 557-565.
  • Alzeer, M., Mackenzie, K.J.D. (2012), Synthesis and Mechanical Properties of New Fibre-Reinforced Composites of Inorganic Polymers with Natural Wool Fibres, Journal of Materials Science, 47, 6958-6965.
  • McPhee, J.R. (1959), The Reaction of Wool With Sodium Hydroxide in Concentrated Salt Solutions, Textile Research Journal, 29(4), 303-320.