IMAGE PROCESSING APPLICATIONS ON YARN CHARACTERISTICS AND FAULT INSPECTION

New developments in machine vision and automation technologies provide more sensitive process control and quality inspection in each stage of the production line. Industry 4.0 and Image Processing techniques have been used in many areas in textile industry in last decade. Image processing techniques have been also used in textile industry on automatic detection of fiber, yarn and fabric characteristics with improved accuracy and quicker results. In this study, a machine vision system for automatic inspection of yarn bobbin and fabric abrage defect is presented. The prototype system is presented with its components. An image processing algorithm is developed and it is applied on different bobbin and fabric samples including abrage fault. The success of the given machine vision system is discussed herein.

İPLİK KARAKTERİSTİĞİ VE HATA TESPİTİ ÜZERİNE GÖRÜNTÜ İŞLEME UYGULAMALARI

Makine görüşü ve otomasyon teknolojilerindeki yeni gelişmeler, üretim hattının her aşamasında daha hassas bir süreç kontrolü ve kalite denetimi sağlamaktadır. Endüstri 4.0 ve Görüntü İşleme teknikleri, son on yılda tekstil endüstrisindeki birçok alanda kullanılmıştır. Görüntü işleme teknikleri, tekstil endüstrisinde, elyaf, iplik ve kumaş özelliklerinin gelişmiş doğruluk ve daha hızlı sonuçlarla otomatik olarak algılanmasında da kullanılmıştır. Bu çalışmada, iplik bobini ve kumaş abraj kusurunun otomatik belirlenmesi için bir makine görme sistemi sunulmuştur. Prototip sistem bileşenleri açıklanmıştır. Geliştirilen görüntü işleme algoritması abraj hatası içeren farklı bobin ve kumaş örneklerine uygulanır. Oluşturulan yapay görme sisteminin başarısı burada tartışılmaktadır

___

1. Glasbey, C.A., Hitchcock, D., Russel, A.J.F., Redden H., (1994),

Towards the Automatic Measurement of Cashmere-fibre Diameter by Image Analysis, The Journal of Textile Institute, 85, 301-307.

2. Baxter, B.P., Brims, M.A., Taylor, T.B., (1992), Description and Performance of the Optical Fibre Diameter Analyser (OFDA), The Journal of Textile Institute, 83, 507-526.

3. Dehghan, N., Tavanaie, M. A., Payvandy, P., (2015), Morphology study of nanofibers produced by extraction from polymer blend fibers using image processing, Korean Journal of Chemical Engineering, 32(9), 1928-1937.

4. Lieberman, M.A., Bragg, C.K., Brennan, S.N., (1998), Determining Gravimetric Bark Content in Cotton with Machine Vision, Textile Research Journal, 68, 94-104.

5. Kang, T.J., Kim, S.C., (2002), Objective Evaluation of the Trash and Color of Raw Cotton by Image Processing and Neural Network,

Textile Research Journal, 72, 776-782.

6. Shiau, Y.R., Tsai, I.S., Lin, C. S., (2000), Classifying Web Defects with a Back-propagation Neural Network by Color Image Processing, Textile Research Journal, 70, 633-640.

7. Wu, D.H., (1994), A Study of The Analysis of Fibre Cross Sections by Image Processing, Journal of the China Textile Institute, 4, 81-89.

8. Xu, B., Pourdeyhimi, B., Sobus, J., (1993), Fiber Cross-sectional Shape Analysis Using Image Processing Techniques, Textile Research Journal, 63, 717-730.

9. Zheng, S., Zou, Z. Y., Shen, W., Cheng, L., (2012), A Study of the Fiber Distribution in Yarn Cross Section for Vortex-Spun Yarn, Textile Research Journal, 82(15), 1579-1586.

10. Kang, T.J., Lee, J.Y., (2001), Filament Crimp in Three Dimensions Measured by Image Analysis and Fractal Geometry, Textile Research Journal, 71, 112-116.

11. Wang, X. H., Wang, J. Y., Zhang, J. L., Liang, H. W., Kou, P. M., (2010), Study on The Detection of Yarn Hairiness Morphology Based on Image Processing Technique, Proceedings of the Ninth International Conference on Machine Learning and Cybernetics. 11(14), 2332-2336, 11-14 July 2010, Qingdao.

12. Kuzanski, M., (2008), The Algorithms of The Yarn Shape Detection and Calculation of The Protruding Fibres Length, MEMSTECH. 21(24), 98-100, 21-24 May 2008, Pollyanna, Ukraine.

13. Fabijanska, A., Strumillo, L. J., (2012), Image Processing and Analysis Algorithms for Yarn Hairiness Determination, Machine Vision and Applications, 23, 527–540.

14. Xu, B. G., Murrells, C. M., Tao, X. M., (2008), Automatic Measurement and Recognition of Yarn Snarls by Digital Image and Signal Processing Methods, Textile Research Journal, 78(5), 439– 456.

15. Guha, A., Amarnath, C., Pateria, S., Mittal, R., (2010), Measurement of yarn hairiness by digital image processing, The Journal of Textile Institute, 101(3), 214–222.

16. Carvalho, V., Cardoso, P., Belsley, M., Vasconcelos, R. M., Soares, F. O., (2006), Development of a Yarn Evenness Measurement and Hairiness Analysis System, 32nd Annual Conference on IEEE Industrial Electronics, 3621-3626, 2006, Portugal.

17. Asgari, H., Mokhtari, F., Latifi, M., Amani-Tehran, M.,(2014), Characterizing cotton yarn appearance due to yarn-to-yarn abrasion by image processing, The Journal of Textile Institute, 105(5), 477-482.

18. Özkaya, Y.A., Acar, M., Jackson, M.R., (2009), Yarn twist measurement using digital imaging, Journal of the Textile Industry, 101 (2), 91-100.

19. Yang, W., Li, D., Zhu, L., Kang, Y., Li, F., (2009), A New Approach For Image Processing In Foreign Fiber Detection, Computers and Electronics in Agriculture, 68(1), 68-77.

20. Roy, S., Sengupta, A.,(2013), Determination of the Diameter Spectrogram and Neps for Yarn Parameterization using Image Processing, International Journal of Electrical, Electronics and Computer Engineering, 2(2), 72-76.

21. Nateri, A.S., Ebrahimi, F., Sadeghzade, N., (2014), Evaluation of yarn defects by image processing technique, Optik-International Journal for Light and Electron Optics, 125(20), 5998-6002.

22. Lawrence, C.A., In Fundamentals of spun yarn technology, CRC Press LLC, Inc.;Boca Raton London New York Washington, D.C., 2003, pp 34-35.

23. Li, D., Yang, W., Wang, S., (2010), Classification Of Foreign Fibers In Cotton Lint Using Machine Vision and Multi-Class Support Vector Machine, Computers and Electronics in Agriculture, 74(2), 274-279.

24. Su, Z., Tian, Y. G., Gao, C., (2006), A Machine Vision System For On-Line Removal Of Contaminants In Wool, Mechatronics, 16(5), 243-247.

25. Yuhong, D., Yongheng, L., Xiuming, J., Wenchao, C., Donghan, G., (2015), Research Of Foreign Fibers In Cotton Yarn Defect Model Based On Regression Analysis, The Journal of Textile Institute, 107(9), 1089-1095.

26. Xinhua, W., Shu, W., Laiqi, X., Baoguo, S., Meijin, L., (2014), Identification Of Foreign Fibers Of Seed Cotton Using Hyper-Spectral Images Based On Minimum Noise Fraction, Transactions of the Chinese Society of Agricultural Engineering, 30(9), 243-248.

27. Pai, A., Sari-Sarraf, H., Hequet, E. F., (2004), Recognition Of Cotton Contaminants Via X-Ray Microtomographic Image Analysis, IEEE Transactions On Industry Applications, 40(1), 77-85.

28. Silvestre, J., Perez, R., Mufnoz, J., (2005), Systems integration of a mixed fibre detection process in raw yarn packages by computer vision, In 2005 IEEE Conference on Emerging Technologies and Factory Automation, pp 1-4, 19-22 Sept. 2005, Catania, Italy.

29. Çelik, H.I., (2016), Development of a machine vision system for yarn bobbin inspection, Industria Textila, 67(5), 292.

30. Gonzalez, R. C. In Digital Image Processing Using Matlab-Gonzalez, Woods & Eddins 2004, pearson.

31. Yang, X., Pang, G. and Yung, N. (2005), Robust fabric defect detection and classification using multiple adaptive wavelets, IEE Proc.-Vis. Image Signal Process. 152, 6, 715-723.

32. Karras, D. A., (2005), Improved defect detection in textile visual inspection using wavelet analysis and support vector machines, International Journal on Graphics, Vision and Image Processing, 5(4), 41-47

33. Serdaroglu, A., Ertuzun, A., Ercil, A., (2007), Defect detection in textile fabric images using subband domain subspace analysis, Pattern Recognition and Image Analysis, 17(4), 663–674.

34. Goswami, M. B., Datta, K. A., (2000), Detecting defects in fabric with laser-based morphological image processing, Textile Research Journal, 70(9), 758-762.

35. Kuo, C. J., Lee, C. J., (2003), A back-propagation neural network for recognizing fabric defects, Textile Research Journal, 73(2), 147-151.

36. Kang, T. J., Cho, D. H., Whang, H. S. A., (1999), New objective method of measuring fabric wrinkles using a 3-D projecting grid technique, Textile Research Journal, 69(4), 261-268.

37. Kang, T. J., Kim, S. C., Sul, I. H., Youn J. R., Chung, K., (2005),

Fabric surface roughness evaluation using wavelet-fractal method: Part I: wrinkle, smoothness and seam pucker, Textile Research Journal, 75(11), 751–760.

38. Jensen, K. L., Carstensen, M., (2002), Fuzz and pills evaluated on knitted textiles by image analysis, Textile Research Journal, 72(1), 34-50.

39. Arkady Cherkassky A., (2010), Objective evaluation of textile fabric appearance part 1: basic principles, protrusion detection, and parameterization, Textile Research Journal, 80(3), 226-235.

40. Hanbay, K., Talu, M. F., Özgüven, Ö. F., (2016), Fabric defect detection systems and methods—A systematic literature review, Optik, 127(24), 11960-11973.

41. Çelik, H. İ., Dülger, L. C., Topalbekiroğlu, M., (2014), Development of a machine vision system: real-time fabric defect detection and classification with neural networks, The Journal of Textile Institute, 105(6), 575-585.
Tekstil ve Mühendis-Cover
  • ISSN: 1300-7599
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1987
  • Yayıncı: TMMOB Tekstil Mühendisleri Odası
Sayıdaki Diğer Makaleler

DENİM KUMAŞLARININ AŞINMA SONRASI RENK FARKLILIĞI İÇİN KAPLAMA İŞLEM PARAMETRELERİNİN TAGCHI YÖNTEMİ İLE OPTİMİZASYON

Hüseyin Gazi TÜRKSOY, Sümeyye ÜSTÜNTAĞ, Münevver Ertek AVCI

ŞARDONLU 3 İPLİK FUTTER KUMAŞLARDA LİF DÖKÜLME ETKİSİNİN ARAŞTIRILMASI

Onur BALCI, Koray PEKTAŞ, İbrahim ARSLAN, Ğassan ASKER, Eray AKKUŞ, Murat SEVİLMİŞ

Tekstil Tasarımında İşbirlikçi Yaklaşım ve Dijital Baskı Tasarımı Üzerine Örnek Bir E-Ticaret Web Sitesinin İncelenmesi

Gökçe COŞKUN, H. Feriha AKPINARLI

YÜN İÇEREN ÇEŞİTLİ KUMAŞLARIN PÜRÜZLÜLÜK ÖZELLİĞİNİN İNCELENMESİ

Gamze SÜPÜREN MENGÜÇ, Gonca ÖZÇELİK KAYSERİ, Nilgün ÖZDİL

İPLİK KARAKTERİSTİĞİ VE HATA TESPİTİ ÜZERİNE GÖRÜNTÜ İŞLEME UYGULAMALARI

Halil İBRAHİM ÇELİK, Elif GÜLTEKİN, Lale Canan DÜLGER, Halil İbrahim SÜNBÜL, Harun KANİ

Denim Kumaşlarının Aşınma Sonrası Renk Farklılığı için Kaplama İşlem Parametrelerinin Taguchi Yöntemi ile Optimizasyonu

Hüseyin Gazi TÜRKSOY, Sümeyye ÜSTÜNTAĞ, Münevver Ertek AVCI

KARBON/XPS SANDVİÇ KOMPOZİTLERİN DÜŞÜK HIZDAKİ DARBELERE KARŞI DAVRANIŞI

Gaye KAYA, Erdem SELVER

LOW VELOCITY IMPACT BEHAVIOUR OF CARBON/XPS SANDWICH COMPOSITES

Erdem SELVER, Gaye KAYA

DEVELOPMENT OF WOVEN FABRICS FOR ELECTROMAGNETIC SHIELDING BY QUALITY FUNCTION DEPLOYMENT APPLICATION

Bilge BERKHAN KASTACI, H. Ziya ÖZEK

FARKLI KARIŞIM ORANLARINA SAHİP MİKRO/MAKRO SİLİKON YUMUŞATICI UYGULAMASININ KUMAŞ PERFORMANSI ÜZERİNDEKİ ETKİSİ

Burcu SANCAR BEŞEN