LİF ENİNE KESİT ŞEKLİNİN POLİESTER DOKUMA KUMAŞLARIN ÇEKME VE YIRTILMA ÖZELLİKLERİ ÜZERİNE ETKİLERİ

İçi dolu ve içi boş dairesel ve trilobal enine kesite sahip poliester liflerden dokunmuş iki tip (bezayağı ve dimi) kumaşın kopma kuvveti, kopma uzaması ve yırtılma kuvveti özellikleri araştırılmıştır. İçi dolu liflerden üretilmiş kumaşlar içi boş liflerden üretilmiş kumaşlara göre daha yüksek kopma uzaması ve yırtılma kuvveti değerleri gösterirken, genellikle daha düşük kopma kuvveti değerleri göstermişlerdir. En yüksek kopma kuvveti değeri içi boş dairesel filamentlerden dokunmuş dimi kumaşta elde edilirken, en yüksek yırtılma kuvveti değeri içi dolu dairesel kesite sahip filamentlerden dokunmuş dimi kumaşta elde edilmiştir. Dairesel kesitli filamentlerden dokunmuş olan kumaşlar en yüksek kopma uzamasına sahiptir. Lif kesitinin kopma mukavemeti ile yırtılma mukavemeti üzerindeki etkisi birbirinden farklılık göstermektedir

EFFECTS OF FIBER CROSS-SECTIONAL SHAPES ON TENSILE AND TEARING PROPERTIES OF POLYESTER WOVEN FABRICS

Breaking load and elongation, and tearing load properties of two type fabrics (plain and twill) woven from polyester fibers having round, hollow round, trilobal and hollow trilobal cross-sectional shapes were investigated. The fabrics produced from full fibers had higher breaking elongation and tearing load values but generally lower breaking load values than the fabrics produced from hollow fibers. The highest breaking load value was obtained in twill fabric woven from filaments having hollow round cross-sectional shape, while the highest tearing load value was obtained in twill fabric woven from filaments having round cross-sectional shape. The fabrics constituting filaments with round cross-sectional shapes had the highest breaking elongation values It was concluded that the effect of fiber cross-sectional shape on breaking strength and on tearing strength differed from each other

___

  • 1. Bueno M.A., Aneia A.P. and Renner M., 2004. “Influence of the shape of fiber cross section on fabric surface characteristics”, Journal of Material Science, 39: 557-564.
  • 2. Oh T.H., Lee M.S., Kim S.Y., et al., 1998. “Studies on melt spinning process of hollow fibers”, Journal of Applied Polymer Science, 66: 1209-1217.
  • 3. Takarada W., Ito H., Kikutani T., et al., 2001. “Studies on high speed melt spinning of noncircular cross-section fibers; I. Structure analysis of as-spun fibers”, Journal of Applied Polymer Science, 80: 1575-1581.
  • 4. Matsui M., 1994. “The spinning of highly aesthetic fibers, “Advanced Fiber Spinning Technology” Nakajima T (ed), Woodhead Publishing Limited, Cambridge, 117-120.
  • 5. Koc S.K., Duzyer S., Berger R., et al., 2012. “Effect of cross-sectional shape on the behaviour of cationic dyeable poly(ethylene terephthalate) fibres”, Textile Research Journal, 82 (13): 1355-1362.
  • 6. Petrulis D., 2004. “Fundamental study of the effect of the fiber wall thickness and inner diameter on the structure of polyamide and polypropylene hollow fibers”, Journal of Applied Polymer Science, 92: 2017-2022.
  • 7. Rwei S.P., 2001. “Formation of hollow fibers in melt spinning process”, Journal of Applied Polymer Science, 82: 2896-2902.
  • 8. De Rovere A., Shambaugh R.L., 2001. “Melt spun hollow fibers: Modeling and experiments”, Polymer Engineering Science, 41: 1206-1219.
  • 9. Lee M.S., Oh T.H., Kim S.Y., et al. 1999. “Deformation kinetics of polypropylene hollow fibers in a continuous in a process”, Journal of Applied Polymer Science, 74: 1836-1845.
  • 10. Wada O., 1992. “Control of fiber form and yarn and fabric structure”, Journal of the Textile Institute, 83: 322-347.
  • 11. Oh T., 2006. “Studies on melt spinning process of hollow polyethylene terephthalate fibers”, Polymer Engineering Science, 46(5): 609-616.
  • 12. Kara S., Erdogan U.H. and Erdem N., 2012. “Effect of polypropylene fiber cross sectional shapes on some structural/mechanical fiber properties and compressibility behaviour of plain knitted fabrics”, Fibers and Polymers, 13(6): 790-794.
  • 13. Lee M.S., Kim S.Y., 2001. “Effects of initial structure on the deformation behavior of PP hollow fiber in continuous drawing”, Journal of Applied Polymer Science, 81: 2170–2182.
  • 14. De Rovere A., Grady B.P. and Shambaugh R.L., 2002. “The influence of processing parameters on the properties of melt-spun polypropylene hollow fibers”, Journal of Applied Polymer Science, 83: 1759–1772.
  • 15. Karaca E., Ozcelik F., 2007. “Influence of the cross-sectional shape on the structure and properties of polyester fibers”, Journal of Applied Polymer Science, 103: 2615–2621.
  • 16. Babaarslan O., Hacıogulları S.O., 2013. “Effect of fibre cross-sectional shape on the properties of POY continuous filaments yarns”, Fibers and Polymers, 14(1): 146-151.
  • 17. Wang Z., Zhong Y., and Wang S., 2012. “A new shape factor measure for characterizing the cross-section of profiled fiber”, Textile Research Journal, 82(5): 454-462.
  • 18. Badrul Hasan M.M., Dutschk V., Brünig H., et al. 2009. “Comparison of tensile, thermal, and thermo-mechanical properties of polyester filaments having different cross-sectional shape”, Journal of Applied Polymer Science, 111(2): 805–812.
  • 19. Yamada J., 2002. Radiative properties of fibers with non-circular cross sectional shapes. Journal of Quantitative Spectroscopy & Radiative Transfer, 73: 261–272.
  • 20. Tyagi G.K., Krishna G., Bhattacharya S., et al. 2009. “Comfort aspects of finished polyester-cotton and polyester-viscose ring and MJS yarn fabrics” Indian Journal of Fibre and Textile Research, 34(2): 137-143.
  • 21. Varshney R.K., Kothari V.K. and Dhamija S.J., 2010. “A study on thermophysiological comfort properties of fabrics in relation to constituent fibre fineness and cross-sectional shapes”, Journal of the Textile Institute, 101(6): 495-505.
  • 22. Mahish S.S., Punj S.K. and Banwari B., 2006. “Effect of substituting modified polyester for cotton in ring-spun polyester/cotton blended yarn fabrics”, Indian Journal of Fibre and Textile Research, 31: 313-319.
  • 23. Karaca E., Kahraman N., Omeroglu S., et al. 2012. “Effects of fiber cross sectional shape and weave pattern on thermal comfort properties of polyester woven fabrics”, Fibres and Textiles in Eastern Europe, 3(92): 67-72.
  • 24. Wang Y.D., Liu X., Wanglei Lan X., et al. 2009. Preparation and properties of non-circular cross-section SiC fibers from a preceramic polymer. In: 8th Pacific Rim Conference on Ceramic and Glass Technology, Vancouver, Canada, May 31 – June 5 2009.
  • 25. Das B., Das A., Kothari V.K., et al. 2008. “Effect of fibre diameter and cross-sectional shape on moisture transmission through fabrics”, Fibers and Polymers, 9(2): 225-231.
  • 26. Kim C., Cho G., Hong, K.A., et al. 2003. “Sound characteristics according to cross-sectional shapes of fibers”, Fibers and Polymers, 4(4): 199-203.
  • 27. Kino N., Ueno T., 2008. “Evaluation of acoustical and non-acoustical properties of sound absorbing materials made of polyester fibres of various crosssectional shapes”, Applied Acoustics, 69(7): 575-582.
  • 28. Becerir B., Karaca E. and Omeroglu S., 2007. “Assessing colour values of polyester fabrics produced from fibres having different cross-sectional shapes after abrasion”, Coloration Technology, 123: 252-259.
  • 29. Tyagi G.K., Goyal A., Mahish S., et al. 2006. “Effect of fiber cross-section on comfort characteristics of ring and MJS yarn fabrics”, Melliand Textile International, 12: 29-32.
  • 30. Matsudaira M., Tan Y. and Kondo Y., 1993. “The effect of fibre cross-sectional shape on fabric mechanical properties and handle”, Journal of the Textile Institute, 84(3): 376–386.
  • 31. Omeroglu S., Karaca E. and Becerir B., 2010. “Comparison of bending, drapability and crease recovery behaviors of woven fabrics produced from polyester fibers having different cross- sectional shapes”, Textile Research Journal, 80(12): 1180-1190.
  • 32. Fangueiro R., Filgueiras A., Soutinho F., et al. 2010. “Wicking behavior and drying capability of functional knitted fabrics”, Textile Research Journal, 80(15): 1522–1530.
  • 33. Shin K.I., Kim S.H. and Kim J.J., 2005. “Image analysis of the luster of fabrics with modified cross-section fibers”, Fibers and Polymers, 6(1): 82-88.
  • 34. Adanur S., 1995. Wellington Sears Handbook of Industrial Textiles, Technomic Publishing, Lancester, 641-642.
  • 35. Eryuruk S.H., Kalaoğlu F., 2015. “The effect of weave construction on tear strength of woven fabrics”, AUTEX Research Journal, 15(3): 207-214.
  • 36. Özdemir H., Yavuzkasap D., 2012. “The effects of raw material, weft setting and weave on the breaking strength, elongation at break and tear strength of upholstery double fabrics”, Tekstil ve Konfeksiyon, 2: 159-166.
  • 37. Mukhopadhyay A., Ghosh S., 2006. “Tearing and tensile strength behaviour of military khaki fabrics from grey to finished process”, International Journal of Clothing Science and Technology, 18(4): 247-264.
  • 38. Greenwood K. 1975. Weaving: Control of Fabric Structure. Merrow Publishing, Watford, 13.
  • 39. Grosberg P., 1969. “The tensile properties of woven fabrics”, Structural Mechanics of Fibers, Yarns, and Fabrics. Eds: JWS Hearle, P Grosberg and S Backer, Wiley-Interscience, New York, 339-340.
  • 40. Taylor M.A., 1999. Technology of Textile Properties: An introduction. 3rd ed.: Forbes Publication Ltd., London, p.175