ISLAK HALDEKİ ÖRME KUMAŞLARIN ISIL DİRENÇLERİNİN ÇOKLU REGRESYON ANALİZİ İLE TAHMİNLENMESİ

Kumaşların ısıl özellikleri lif ve iplik tipi, kumaş kalınlığı gibi kumaş konstrüksiyon parametrelerinin yanında kumaşta bulunan nem oranına da bağlıdır. Kumaşın nem oranı arttığında ısıl özellikleri değişmektedir. Isıl direnç kumaş ısıl konforunun temel parametrelerinden birisidir. Kumaş ısıl direnci, kumaşın nem oranı arttığında azalmaktadır. Bu çalışmada pamuk, poliester, modal ve akrilik liflerinden üretilmiş örme kumaşların farklı nem oranlarındaki ısıl direnci iki farklı regresyon analizi ile tahminlenmiştir. Sonuçlar lifin özgül ısısı, lif yoğunluğu, kumaş kalınlığı ve ilmek yoğunluğunun kumaş ısıl direnci için en önemli özellikler olduğunu ve kumaşların farklı nem oranlarında ısıl dirençlerinin regresyon analizi ile tahminlenebileceğini göstermektedir

PREDICTION OF THERMAL RESISTANCE OF THE KNITTED FABRICS IN WET STATE BY USING MULTIPLE REGRESSION ANALYSIS

Thermal properties of fabric depend on fabric construction parameters such as fiber and yarn type, fabric thickness etc. and also moisture content present. As the moisture content of the fabrics increase thermal properties of the fabrics vary. Thermal resistance is one of the main parameters of thermal comfort of fabrics. Thermal resistance of fabric decreases as the fabric moisture content increases. In this study the thermal resistance of knitted fabrics produced from cotton, polyester, modal and acrylic fibers in different moisture content is predicted from construction parameters by using two different regression analyses. The findings show that specific heat of fiber, fiber density, fabric thickness and loop density are the most important factors for thermal resistance of the fabric and thermal resistance of the fabric in different moisture content can be predicted by using regression analysis successfully

___

  • 1. Li, Y., 2001, "The Science of Clothing Comfort", Textile Progress, The Textile Institute International, UK. 138p.
  • 2. Özdil, N., Marmaralı, A. and Dönmez Kretzschmar, S., 2007, "Effect of Yarn Properties on Thermal Comfort of Knitted Fabrics", International Journal of Thermal Sciences, Vol: 46, pp: 1318–1322.
  • 3. Hes, L. and Loghin, C., 2009, "Heat, Moisture and Air Transfer Properties of Selected Woven Fabrics in Wet State", Journal of Fiber Bioengineering and Informatics, Vol: 2 (3), pp: 141 - 149.
  • 4. Stanković, S. B., Popović, D. and Poparić, G. B., 2008, "Thermal Properties of Textile Fabrics Made of Natural and Regenerated Cellulose Fibers", Polymer Testing, Vol: 27, pp: 41–48.
  • 5. Çil, M.G., Nergis, U.B. and Candan, C., 2009, "An Experimental Study of Some Comfort-Related Properties of Cotton--Acrylic Knitted Fabrics", Textile Research Journal, Vol: 79(10), pp: 917–923.
  • 6. Čiukas, R., Abramavičiūtė, J. and Kerpauskas, P., 2011, "Investigation of the Thermal Properties of Socks Knitted From Yarns with Peculiar Properties. Part II: Thermal Resistance of Socks Knitted from Natural and Stretch Yarns", Fibres & Textiles in Eastern Europe, Vol: 19(3(86)), pp: 64-68.
  • 7. Behera , B. K., Ishtiaque, S. M. and Chand, S., 1997, "Comfort Properties of Fabrics Woven from Ring-, Rotor-, and Friction-Spun Yarns", Journal of The Textile Institute, Vol: 88(3), pp: 255-264.
  • 8. Kane, C. D., Patil U. J. and Sudhakar, P., 2007, "Studies on the Influence of Knit structure and Stitch Length on Ring and Compact Yarn Single Jersey Fabric Properties", Textile Research Journal, Vol: 77(8), pp: 572–582.
  • 9. Majumdar, A., Mukhopadhyay, S. and Yadav, R., 2010, "Thermal Properties of Knitted Fabrics Made from Cotton and Regenerated Bamboo Cellulosic Fibres", International Journal of Thermal Sciences, Vol: 49, pp: 2042-2048.
  • 10. Vigneswaran, C., Chandrasekaran K. and Senthilkumar, P., 2009, "Effect of Thermal Conductivity Behavior of Jute/Cotton Blended Knitted Fabrics", Journal of Industrial Textiles, Vol: 38(4), pp: 289-306.
  • 11. Wang, F., Zhou, X. and Wang, S., 2009, "Development Processes and Property Measurements of Moisture Absorption and Quick Dry Fabrics", Fibres & Textiles in Eastern Europe, Vol: 17(2 (73)), pp: 46-49.
  • 12. Zhang, W., Li , J., Chen, W. and Long, S., 1999, "Wetness Comfort of Fine Polypropylene-Fibre Fabrics", Journal of The Textile Institute, Vol: 90(2), pp: 252-263.
  • 13. Bedek, G., Salaün, F., Martinkovska, Z., Devaux, E. and Dupont, D., 2011, "Evaluation of Thermal and Moisture Management Properties on Knitted Fabrics and Comparison with a Physiological Model in Warm Conditions, Applied Ergonomics, Vol: 42, pp: 792-800.
  • 14. Uçar, N. and Yılmaz, T., 2004, "Thermal Properties of 1×1, 2×2, 3×3 Rib Knit Fabrics", Fibres & Textiles in Eastern Europe, Vol: 12 (3), pp: 34-38.
  • 15. Oğlakçıoğlu, N. and Marmaralı, A., 2007, "Thermal Comfort Properties of Some Knitted Structures", Fibres & Textiles in Eastern Europe, Vol: 15(5 - 6 (64 - 65)), pp: 94-96.
  • 16. Celcar, D., Meinander, H. and Geršak, J., 2008, "A Study of the Influence of Different Clothing Materials on Heat and Moisture Transmission Through Clothing Materials, Evaluated Using a Sweating Cylinder", International Journal of Clothing Science and Technology, Vol: 20 (2), pp: 119-130.
  • 17. McGregor, B.A. and Postle, R., 2008, "Mechanical Properties of Cashmere Single Jersey Knitted Fabrics Blended with High and Low Crimp Superfine Merino Wool", Textile Research Journal, Vol: 78(5), pp: 399-411.
  • 18. Cubric, I. S., Skenderi , Z., Mihelic-Bogdanic, A. and Andrassy, M., 2012, "Experimental Study of Thermal Resistance of Knitted Fabrics", Experimental Thermal and Fluid Science, Vol: 38, pp: 223-228.
  • 19. Chen, Y.S., Fan, J. and Zhang, W., 2003, "Clothing Thermal Insulation During Sweating", Textile Research Journal, Vol: 73(2), pp: 152-157.
  • 20. Hes, L. and Araujo M. De, 2010, "Simulation of the Effect of Air Gaps Between the Skin and a Wet Fabric on Resulting Cooling Flow", Textile Research Journal, Vol: 80(14), pp: 1488–1497.
  • 21. Oğlakçıoğlu, N. and Marmaralı, A., 2010, "Thermal Comfort Properties of Cotton Knitted Fabrics in Dry and Wet States", Tekstil ve Konfeksiyon, Vol: 3, pp: 213-217.
  • 22. Ziegler, S. and Kucharska-Kot J., 2006, "Estimation of the Overall Heat-Transfer Coefficient Through a Textile Layer", Fibres & Textiles in Eastern Europe, Vol: 14 (5 (59)), pp: 103-106.
  • 23. Dias, T. and Delkumburewatte, G. B., 2007, "The Influence of Moisture Content on the Thermal Conductivity of a Knitted Structure", Measurement Science and Technology, Vol: 18, pp: 1304–1314.
  • 24. Militky, J. and Křemenáková, D., 2008, "Thermal Conductivity of Wool/Pet Weaves", HEFAT2008, 6th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 30 June- 2 July 2008, Pretoria, South Africa
  • 25. Bhattacharjee, D. and Kothari, V. K., 2009, "Heat Transfer Through Woven Textiles", International Journal of Heat and Mass Transfer, Vol: 52, pp: 2155– 2160.
  • 26. Mohammadi, M., Banks-Lee P. and Ghadimi, P., 2003, "Determining Effective Thermal Conductivity of Multilayered Nonwoven Fabrics", Textile Research Jou rnal, Vol: 73(9), pp: 802-808.
  • 27. Banks-Lee, P., Mohammadi M. and Ghadimi, P., 2004, "Utilization of Air Permeability in Predicting the Thermal Conductivity", INJ, Vol: Summer 2004, pp: 28-33.
  • 28. Kanat, Z. E., 2013, A Study on Prediction and Modellling of Thermal Resistance of Knitted Fabrics in Different Moisture Content, PhD Thesis, Ege University Graduate School of Natural and Applied Science, Turkey, 150 p.
  • 29. Ergün, M., 1995, "Application of Statistics in Scientific Research: SPSS for WINDOWS", pp: 107-109.