Investigation of the internal structure of regenerated bamboo fiber

İnsan nüfusunun hızla artışı ve teknolojide meydana gelen gelişmeler sonucunda tekstil endüstrisinde rejenere selülozik lifler giderek önem kazanmaktadır. Bambu elyaf da anti bakteriyel, kolay boyanabilirlik, yumuşak tutum gibi özelliklere sahip olan rejenere selülozik bir liftir ve hızla yayılmakta olan sağlıklı yaşam trendinin tekstile de yansımasıyla kullanımı giderek artmaktadır. Bambu elyaf hakkında derinlemesine bilgi sahibi olunması amacıyla, liflerin iç yapısı, polimerizasyon derecesi, % kristalinite oranı ve tanecik boyutu incelenmiş, elde edilen sonuçlar % 100 pamuk lifleri ile karşılaştırılmıştır. Liflerin farklı mekanik özelliklere sahip olmalarının, iç yapılarındaki farklılıklardan kaynaklandığı tespit edilmiştir.

Rejenere bambu elyafın iç yapı özelliklerinin incelenmesi

Regenerated cellulose fibers are gaining importance in textile industry with the increase in human population and the advances in technology. Bamboo fiber is a cellulose fiber with antibacterial and easy dyeability properties and a soft feeling and its use is increasing as the healthy living trend gains momentum and impacts the textile industry. To have an in-depth knowledge of bamboo fiber, the internal structure, degree of polymerization, percent crystallinity ratio and particle size of bamboo fibers were examined and compared with those of 100% cotton fibers. According to the results obtained, the differences in mechanical properties of fibers, were found to be closely related to the variations in their internal structures.

___

  • 1.Shah, V., 1998, "Handbook of Plastics Testing Technology", Second Edition, A Willey-lnterscience Publication (Willey and Sons),NY, 185.
  • 2.Happy, F., 1979, "Applied Fibre Science", Academic Press, London Vol 3.
  • 3.Yakartepe, Z., Yakartepe.M., 1995, "Tekstil Teknolojisi (Elyaftan kumaşa)", 9 (1995), 317, 10, 294.
  • 4.Kreze.T., Malej.S., 2003, "Structural Characteristics of new and Conventional Regenerated Cellulosic Fibers", Textile Research Journal 73 8,675.
  • 5. Gordon,S.; Hsieh, Y.- L.: 2007, "Cotton: Science and Technology", CRC Press LCC, USA, 23.
  • 6.Bahtiyari, M.İ., 2005, "Viskon Kumaşların Farklı Tip Enzimlerle Pilling Probleminin Önlenmesi ve Elde Edilen Efektlerin Karşılaştırılması", Yüksek Lisans Tezi, Ege Üniversitesi.
  • 7.Rouette Hans-Karl, 2000, Encyclopedia of Textile Finishing, Springer, 237.
  • 8.ttp://www.bambrotex.com, 2007.
  • 9.http://www.swicofil.com, 2008.
  • 10.http://www.mad4mobilephones.com/bamboo-phone-with-nanotech-self-cleaning-coating 871/, 2009.
  • 11.Wang Y, Gao X, 2005. "The Performance of Fabric from Bamboo Fibre", Textile Asia, 36/6, 35-38.
  • 12."Processing of bamboo fibre in textile industries", 2007, Colourage 54/4, 72-74.
  • 13.Shen Q, Liu D, Gao Y, Chen Y, 2004,"Surface Properties of Bamboo Fiber and A Comparison with Cotton Linter Fibers" Colloids and Surfaces B: Biointerfaces, 35, 193.
  • 14.http://www.com4th.com/advantages.html, 2007.
  • 15.Wang XC, Shi LM, Zhu C, Sun WL, 2007, "Study on Dyeing Property of Bamboo/Wool Blended Fabric with Anazol Reactive Dyestuffs", Wool Textile Journal, 3, (19-23).
  • 16.Shi LM, Wang YP, Su HP, 2006, "Study on the Deveopment and Performance of Bamboo/Wool Blended Fabrics", Wool Textile Journal 12 (17-21).
  • 17.Yang QB, LiuYX, Wang R, 2006, "Impact of Heat Treatment on Mechanical Properties of Natural Bamboo Fibers and Bamboo Pulp Fibers", Journal of Tianjin Polytechnic University 2006 25/6 (33-36).
  • 18.Gökdal.H., Canoğlu.S.: 2007, "Bambu - Pamuk Elyaf Karışımlı İpliklerin Çeşitli Özelliklerinin İncelenmesi", Yüksek Lisans Tezi, M.Ü., İstanbul, Türkiye.
  • 19.Okubo,K., Fujii.T., Yamamoto,Y., 2004, "Development of Bamboo-Based Polymer Composites and Their Mechanical Properties", Composites, A 35, 377.
  • 20.Küçük G, Süllüoğlu G, Özbek S, Hatiboğlu A, 2005, "Bambu İpliklerinden Örülmüş Kumaşların Tasarımını Etkileyen Faktörler"; Bitirme Tasarım Projesi, İTÜ, Mayıs.
  • 21.Andre A, 2006, "Fibers for Strengthening of Timber Structures" Lulea University of Technology, Technical Report, 3, 43.
  • 22.Okubo K, Fujii T, Thostenson ET, 2009, "Multi-scale Hybrid Biocomposite: Processing and Mechanical Characterization of Bamboo Fiber Reinforced PLA with Microfibrillated Cellulose", Composites: Part A 40, 469-475.
  • 23.Lewin.M., 2007, "Handbook of Fiber Chemistry", Third Edition, CRC Press, USA, 521, 581.
  • 24.Finishing of Lyocell, 1998, Published Rudolf GmbH & Co.KG in cooperation with Courtaulds Fibers Ltd.
  • 25.TS 393 EN ISO 13938-1: "Patlama Mukavemeti", Türk Standartlar Enstitüsü, Türkiye, Aralık, (2002).
  • 26.TS EN ISO 12947-2: "Martindale Metoduyla Kumaşların Aşınmaya Karşı Dayanımının Tayini", Türk Standartlar Enstitüsü, Türkiye, Nisan (2001).
  • 27.AATCC Test Method 79: 2007, "Absorbency of Textiles", American Association of Textile Chemists and Colorists.
  • 28.Droz,C., Vallat-Sauvain,E., Bailat.J., Feitknecht.L., Meier,J., Shah,A., 2004, "Relationship Between Raman Crystallinity and Open-circuit Voltage in Microcrystalline Silicon Solar Cells"; Solar Energy Materials and Solar Cells, 81/1, 25, 61.
  • 29.Cao,Y.,Tan,H., 2005, "Study on Crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction", Enzyme and Microbial Technology, 36, 314.
  • 30.Yudianti.R., Indrarti.L., 2008 "Effect of Water Soluble Polymer on Structure and Mechanical Properties of Bacterial Cellulose Composites", Journal of Applied Scienses, 8/1,177.
  • 31.Cullity.B.D., Stock,S.R., 2001, "Elements of X-Ray Diffraction", Third Edition, New Jersey, USA, 295.
  • 32.BS 6306-1: "Methods for determination of limiting viscosity number of cellulose in dilute solutions (Cupri-ethylene-diamine method)", British Standards, October (1982).
  • 33.Ullmann's Fibers", Ullmann's Encyclopedia Of Industrial Chemistry, 6 Th Edition , 03.2008, Editor Willey-VCH yerlag GmbH&CoKGaA, Weinheim, http://books.google.com.tr.
  • 34.Sperling,L.H., 2006 "Introduction to Physical Polymer Science", fourth Edition, A John Wiley& Sons, Inc. Pulication, Pennsylvania, 113.
  • 35.Ribitsch.V., 2002 "Textile Fasermodifikation", Energie- und Umweltforschung 21, Nachhaltig wirtschaften konkret, Joanneum Research Institut für Chemische Prozessentwicklung und -kontrolle, http://www.nachhaltigwirtschaften.at/results.html/id2638
  • 36.Gruber, E., 2006, Makromolekulare Chemie Nachwachsender Rohstoffe, Vorlesung EG 8 10/2 (2006),http://www.cellulose-papier.chemie.tu-darmstadt.de/Deutsch/Vorlesungen_undveranstaltungen/Vorlesungen/Chem_Pruefung/P DF/Folien/10PPZellstoffe.pdf.
  • 37.Ali,M., Elley,C., Emsley.A.M., Heywood.R., Xaio,X., 1996 "Measuring and Understanding the Ageing of Kraft Insulating Paper in Power Transformers", IEEE Electrical Insulation Magazine, 12 3 (1996) 31.
  • 38.Heywood.R.J., Emsley.A.M., Ali,M., 2000 "Degradation of Cellulosic Insulation in Power Transformers", IEE Proc.-Sci. Meas. Technol., 147 2 89.
  • 39.Büyükakıncı BY, Sökmen, N., 2009, "A Comparative Study of Bamboo Fiber and Cotton Fiber", 5. Ulusal Nanobilim ve Nanoteknoloji Konferansi, 8-12 Haziran, Eskişehir.
  • 40.Subramanian.K., Senthil Kumar,P., Jeyapal.P., Venkatesh.N., 2005, "Characterization of Ligno-cellulosic Seed Fibre From Wrightia Tinctoria Plant for Textile Applications - an Exploratory Investigation"; European Polymer Journal, 41 4, 853.
  • 41.Cao,Y.,Tan,H., 2005"Study on Crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction", Enzyme and Microbial Technology, 36, 314.
Tekstil ve Konfeksiyon-Cover
  • ISSN: 1300-3356
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Ege Üniversitesi Tekstil ve Konfeksiyon Araştırma & Uygulama Merkezi