Türkiye’de ekimi yapılan bazı arpa çesitlerinde erken fide evresi tuz toleransının belirlenmesi

Bu arastırmada, farklı NaCl konsantrasyonlarına (0, 100, 150 ve 200 mM) maruz bırakılan on iki arpa (Hordeum vulgare L.) çesidi erken fide evresinde tuza toleransları bakımından sınıflandırılmıstır. Arpa çesitlerinin tuza toleransındaki tepkileri belirlemek için kök ve gövde kuru ağırlığının bir fonksiyonu olarak tuza tolerans indeksi (%) bir kriter olarak değerlendirilmistir. Sonuç olarak, Avcı-2002 tuza en toleranslı ve Tokak 157/37 tuza en hassas arpa çesidi olarak belirlenmistir. $Na^ +/K^ +$ oranının tuza tolerans açısından etkili bir kriter olarak kullanılıp kullanılmayacağını değerlendirmek için Avcı-2002 ve Tokak 157/37 arpa çesitleri, kontrol veya artan NaCl konsantrasyonlarına (100, 200 ve 300 mM) 6 gün için maruz bırakılmıstır. Her iki arpa çesidi, köküne göre gövdesinde daha fazla $Na^ +$ ve K+ biriktirmistir. Her iki arpa çesidinin kök ve gövde dokusunda NaCl konsantrasyonunun artmasıyla Na+ içeriği önemli düzeyde artarken, $K^ +$ içeriği önemli düzeyde azalmıstır (P

Determination of early seedling stage salt tolerance in some barley cultivars Grown in Turkey

In this research, twelve cultivars of barley (Hordeum vulgare L.) subjected to different NaCl concentrations (0, 100, 150 and 200 mM NaCl) were classified according to their salt tolerance at early seedling stage. To evaluate responses in salt tolerance of barley cultivars, the salt tolerance index (%), which is a function of root and shoot dry weights, was evaluated as a criterion. As a result, the most salt-tolerant barley cultivar, Avcı-2002, and the most saltsusceptible barley cultivar, Tokak 157/37, were selected. In order to evaluate whether $Na^ +/K^ +$ ratio could be used as an effective criterion for salt tolerance in barley cultivars, Avcı-2002 and Tokak 157/37 were subjected to control or increased concentrations of NaCl (100, 200 and 300 mM) for 6 days. Both barley cultivars accumulated more $Na^ +$ and $K^ +$ in their shoots than roots. The contents of $Na^ +$ in the root and shoot of both cultivars increased significantly with increasing concentrations of NaCl, whereas the contents of K+ decreased (P

___

  • Apse M P & Blumwald E (2007). $Na^ +$ transport in plants. FEBS Letters 581: 2247-2254
  • Ashraf M (1994). Breeding for salinity tolerance in plants. Critical Reviews in Plant Sicences 13: 17-42
  • Ashraf M & Harris P J C (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science 166: 3-16
  • Ashraf M & Ali Q (2008). Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and Experimental Botany 63: 266-273
  • Ayhan B, Ekmekçi Y & Tanyolaç D (2007). Erken fide evresindeki bazı mısır çesitlerinin ağır metal (kadmiyum ve kursun) stresine karsı dayanıklılığının arastırılması. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi 8(2): 411-422
  • Bağcı S A, Ekiz H & Yılmaz A (2003). Determination of the salt tolerance of some barley genotypes and the characteristics affecting tolerance. Turkish Journal of Agriculture and Forestry 27: 253-260
  • Chhipa B R & Lal P (1995). Na/K ratios as the basis of salt tolerance in wheat. Australian Journal of Agricultural Research 46: 533-539
  • Cramer G R, Epstein E & Läuchli A (1990). Effects of sodium, potassium and calcium on salt-stressed barley. Physiologia Plantarum 80: 83-88
  • Davenport R J, Reid R J & Smith F A (1997). Sodium calcium interactions in two wheat species differing in salinity tolerance. Physiologia Plantarum 99: 323- 327
  • Franco J A, Esteban C & Rodriguez C (1993). Effects of salinity on various growth stages of muskmelon cv. Revigal. Journal of Horticulture Science 68: 899-904
  • Hasegawa P M, Bressan R A & Zhu J K (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology 51: 463-499
  • He T & Cramer G R (1992). Growth and mineral nutrition of six rapid-cycling Brassica species in response to seawater salinity. Plant and Soil 139: 285-294
  • Joshi Y C, Quadar A & Rana R S (1979). Differential sodium and potassium accumulation related to sodicity tolerance in wheat. Indian Journal of Plant Physiology 22: 226-230
  • Khan M H & Panda S K (2008). Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiologiae Plantarum 30: 81-89
  • Kholová J, Sairam R K & Meena R C (2010). Osmolytes and metal ions accumulation, oxidative stress and antioxidant enzymes activity as determinants of salinity stress tolerance in maize genotypes. Acta Physiologiae Plantarum 32: 477-486
  • Leonova T G, Goncharova E A, Khodorenko A V & Babakov A V (2005). Characteristics of salt-tolerant and salt-susceptible cultivars of barley. Russian Journal of Plant Physiology 52: 774-778
  • Misra N & Dwivedi U N (2004). Genotypic difference in salinity tolerance of green gram cultivars. Plant Science 166: 1135-1142
  • Munns R (1993). Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses, Plant, Cell and Environment 16: 15-24
  • Munns R (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment 25: 239- 250
  • Neumann P M (1995). Inhibition of root growth by salinity stress: toxicity or an adaptive biophysical response. In: F Baluska, M Ciamporova, O Gasparikova & P W Barlow (Eds.), Structure and function of roots, Kluwer Academic Publishers, The Netherlands, pp. 299-304
  • Noble C L & Rogers M E (1992). Arguments for the use of physiological criteria for improving the salt tolerance in crops. Plant and Soil 146: 99-107
  • Parida A K & Das A B (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60: 324-349
  • Royo A & Aragues R (1999). Salinity-yield response functions of barley genotypes assessed with a triple line source sprinkler system. Plant and Soil 209: 9-20
  • Sairam R K, Rao K V & Srivastava G C (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science 163: 1037-1046
  • Sairam R K & Tyagi A (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science 86: 407-421
  • Saqib M, Akhar J & Qureshi R H (2005). $Na^ +$ exclusion and salt resistance of wheat (Triticum aestivum) in saline-waterlogged conditions are improved by the development of adventitious nodal roots and cortical root aerenchyma. Plant Science 169: 125-130
  • Šiler B, Mišić D, Filipović B, Popović Z, Cvetić T & Mijović A (2007). Effects of salinity on in vitro growth and photosynthesis of common centaury (Centaurium erythraea Rafn.). Archives of Biological Science Belgrade 59: 129-134
  • Tester M & Davenport R (2003). $Na^ +$ tolerance and $Na^ +$ transport in higher plants. Annals of Botany 91: 503- 507
  • TÜİK (2004). Tarımsal Yapı ve Üretim, Ankara
  • Wei W, Bilsborrow P E, Hooley P, Fincham D A, Lombi E & Forster B P (2003). Salinity induced differences in growth, ion distribution and partitioning in barley between the cultivar Maythorpe and its derived mutant Golden Promise. Plant and Soil 250: 183-191
  • Zhu J K (2001). Cell signaling under salt, water and cold stresses. Current Opinion in Plant Biology 4: 401-406
  • Zhu G Y, Kinet J-M & Lutts S (2001). Characterization of rice (Oryza sativa L.) F3 populations selected for salt resistance. I. Physiological behavior during vegetative growth. Euphytica 121: 25-263