Determining the Relationship of Evapotranspiration with Precipitation and Temperature Over Turkey

Evapotranspiration (ET), which is a combination of the words evaporation and transpiration, is expressed as the sum of water due to water consumption and evaporation in plants. In this study, the NASADrought Early Warning Systems Network Land Data Assimilation System model (FLDAS NOAH) was used to determine evapotranspiration data for the 2018-2019 water years (October 2017-September 2019) on Turkey. In addition, NASA Global Land Data Assimilation System (GLDAS NOAH) was used for temperature data. Total precipitation data with corrected error rates are taken from MERRA-2 Model M2TMNXFLX. The relationship between the determined monthly total average evapotranspiration values and the monthly average precipitation and monthly average temperature values was determined by ArcGIS. It is important to examine the local evaporation and transpiration conditions in more detail in the regions where water resources planning will be made. The importance of water holding capacity in plants in determining agricultural and hydrological drought can be explained by evapotranspiration.

___

  • Anderson M C, Kustas W P, Norman J M, Hain C R, Mecikalski J R, Schultz L, Gonzalez-Dugo M P, Cammalleri C, d’Urso G, Pimstein A. & Gao F (2011). Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrology and Earth System Sciences 15: 223-239
  • Chen Y, Li X, Jing L & Shei P (2005). Estimation of daily evapotranspiration using a two-layer remote sensing model. International Journal of Remote Sensing 26 (8): 1755-1762
  • Coğrafya (2019). http://www.cografya.gen.tr/siyasi/devletler/turkiye.htm. Access date: 01.12.2019
  • Du J P & Sun R (2012). Estimation of evapotranspiration for ungauged areas using MODIS measurements and GLDAS data. Procedia Environmental Sciences 13: 1718-1727
  • Fang H, Beaudoing H K, Rodell M, Teng W L, Vollmer B E (2009). Global land data assimilation system (GLDAS) products, services and application from NASA hydrology data and information services center (HDISC), In: ASPRS 2009 Annual Conference, Baltimore, Maryland, 8-13 March
  • Glenn, E P, Huete A R, Nagler P L, Hirschboeck K K & Brown P (2007). Integrating remote sensing and ground methods to estimate evapotranspiration. Critical Reviews in Plant Sciences 26(3): 139-168
  • GSFC (2019). Giovanni. Retrieved in November, 11, 2019 from https://giovanni.gsfc.nasa.gov/giovanni
  • Loeser C, Rui H, Teng W, Ostrenga D, Wei J, McNally A, Jacob J P & Meyer D (2020). Famine early warning systems network (FEWS NET) land data assimilation system (LDAS) and other assimilated hydrological data at NASA GES DISC. In: American Meteorological Society Annual Meeting, 12 January, Boston
  • MGM (2019). Buharlaşma. Retrieved in November, 19, 2019 from https://www.mgm.gov.tr/arastirma/buharlasma.aspx
  • Park J & Choi M (2015). Estimation of evapotranspiration from ground-based meteorological data and global land data assimilation system (GLDAS). Stochastic Environmental Research and Risk Assessment 29: 1963-1992
  • Rodell M, Houser P R, Jambor U, Gottschalk J, Mitchell K, Meng C J, Arsenault K., Cosgrove B, Radakovich J, Bosilovich M, Entin J K, Walker J P, Lohmann D & Toll D (2004). The global land data assimilation system. Bulletion of American Meteorological Society, 85(3): 381-394
  • Reichle, R. H., Draper, C. S., Liu, Q., Girotto, M., Mahanama, S. P., Koster, R. D., & De Lannoy, G. J. (2017). Assessment of MERRA-2 land surface hydrology estimates. Journal of Climate, 30(8), 2937-2960
  • Swenson S & Wahr J, (2006). Estimating large-scale precipitation minus evapotranspiration from GRACE satellite gravity measurements. Journal of Hydrometeorology 7(2): 252-270
  • USGS (2019). Evaporation and the Water Cycle. Retrieved in November, 20, 2019 from https://water.usgs.gov/edu/watercycleevaporation.html