Clostridium Perfringens Tip A ve Tip E'ye Karşı Rekombinant Aşı Tasarımı ve Analizi

Amaç: Clostridium perfringens (C. perfringens), çevrede, topraklarda, gıdalarda ve insanların veya hayvanların bağırsaklarında bulunabilen ve spor oluşturan, anaerobik ve gram pozitif bakteridir. Hayvanlarda kullanmak için geliştirilen aşılar insanlar tarafından da kullanma potansiyeline sahip olabilir. Bu çalışmada, C. perfringens tip A ve E'ye karşı çoklu epitop aşısının tasarlanması ve analizi amaçlanmıştır. Materyal-Metot: B hücresi epitopları IEDB (https://www. iedb.org/) ve MCH Class II epitopları ise Vaxign 2 Beta (http://www.violinet.org/vaxign/) ve Propred-I 2003 (http:// crdd.osdd.net/raghava/propred1/) programın kullanarak tasarlanmıştır. Bulgular: Elde edilen fizikokimyasal sonuçlara göre tasarlanan aşı 58,33 kDa ağırlığına sahip olmaktadır. Aday aşının yarılanma ömrü memeli hücrelerinde 100 saatin üzerinde, mayada 20 saatin üzerinde ve Escherichia coli'de 10 saatin üzerinde olduğu bulunmuştur. Aşının instabilite indeksi 28,41 (

Design and Analysis Of Recombinant Vaccine Against Clostridium Perfringens Type A and Type E

Objective: Clostridium perfringens (C. perfringens) is aspore-forming, anaerobic, gram positive, bacteria that foundin environment, soils, foods, and in intestinal traces of humansor animals. However, vaccines being developed for use inanimals have the potential to be developed for use in humans.This study was aimed to design and analysis of multi epitopevaccine against C. perfringens type A and E.Material-Method: The B cell epitopes were predicted byIEDB (https://www.iedb.org/) and MCH Class II epitopeswere predicted by Vaxign 2 Beta (http://www.violinet.org/vaxign/) and Propred-I 2003 (http://crdd.osdd.net/raghava/propred1/) web server.Results: Physicochemical study of vaccine showed that thedesigned vaccine is 58.33 kDa. The half-life of candidatevaccine was found to be greater than 100 hours in mammaliancells, greater than 20 hours in yeast, and greater than 10hours in Escherichia coli. The instability index of vaccinewas 28.41 (

___

  • 1. McClane B, Uzal F, Miyakawa M, Lyerly D, Wilkins T. The Enterotoxic 644 Clostridia. 2006.
  • 2. Li J, Adams V, Bannam TL, Miyamoto K, Garcia JP, Uzal FA, et al. Toxin plasmids of Clostridium perfringens. Microbiol Mol Biol Rev. 2013;77(2):208-33.
  • 3. Awad MM, Bryant AE, Stevens DL, Rood JI. Virulence studies on chromosomal α‐toxin and Θ‐toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of α‐toxin in Clostridium perfringensmediated gas gangrene. Molecular microbiology. 1995;15(2):191-202.
  • 4. Fernández Miyakawa ME, Uzal FA. Morphologic and physiologic changes induced by Clostridium perfringens type A α toxin in the intestine of sheep. American journal of veterinary research. 2005;66(2):251-5.
  • 5. Songer JG. Clostridial diseases of small ruminants. 1998.
  • 6. Bryant AE, Chen RY, Nagata Y, Wang Y, Lee C, Finegold S, et al. Clostridial Gas Gangrene. I. Cellular and Molecular Mechanisms of Microvascular Dysfunction Induced by Exotoxins of Clostvidium pevfvingens. The Journal of infectious diseases. 2000;182(3):799-807.
  • 7. Naylor CE, Eaton JT, Howells A, Justin N, Moss DS, Titball RW, et al. Structure of the key toxin in gas gangrene. Nature Structural & Molecular Biology. 1998;5(8):738.
  • 8. Sakurai J, Nagahama M, Oda M. Clostridium perfringens alpha-toxin: characterization and mode of action. Journal of biochemistry. 2004;136(5):569-74.
  • 9. Nagahama M, Yamaguchi A, Hagiyama T, Ohkubo N, Kobayashi K, Sakurai J. Binding and internalization of Clostridium perfringens iota-toxin in lipid rafts. Infection and immunity. 2004;72(6):3267-75.
  • 10. Richard JF, Mainguy G, Gibert M, Marvaud JC, Stiles BG, Popoff MR. Transcytosis of iota‐toxin across polarized CaCo‐2 cells. Molecular microbiology. 2002;43(4):907-17.
  • 11. Redondo LM, Carrasco JMD, Redondo EA, Delgado F, Miyakawa MEF. Clostridium perfringens type E virulence traits involved in gut colonization. PloS one. 2015;10(3):e0121305.
  • 12. Dikhit MR, Kumar A, Das S, Dehury B, Rout AK, Jamal F, et al. Identification of potential MHC Class-II-restricted epitopes derived from Leishmania donovani antigens by reverse vaccinology and evaluation of their CD4+ T-cell responsiveness against visceral leishmaniasis. Frontiers in immunology. 2017;8:1763.
  • 13. Doyle MP, Buchanan RL. Food microbiology: fundamentals and frontiers: American Society for Microbiology Press; 2012.
  • 14. Dimitrov I, Bangov I, Flower DR, Doytchinova I. AllerTOP v. 2—a server for in silico prediction of allergens. Journal of molecular modeling. 2014;20(6):2278.
  • 15. Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GP, et al. In silico approach for predicting toxicity of peptides and proteins. PloS one. 2013;8(9):e73957.
  • 16. Shey RA, Ghogomu SM, Esoh KK, Nebangwa ND, Shintouo CM, Nongley NF, et al. In-silico design of a multiepitope vaccine candidate against onchocerciasis and related filarial diseases. Scientific reports. 2019;9(1):4409.
  • 17. Khan A, Junaid M, Kaushik AC, Ali A, Ali SS, Mehmood A, et al. Computational identification, characterization and validation of potential antigenic peptide vaccines from hrHPVs E6 proteins using immunoinformatics and computational systems biology approaches. PloS one. 2018;13(5):e0196484.
  • 18. Shahsavani N, Sheikhha MH, Yousefi H, Sefid F. In silico Homology Modeling and Epitope Prediction of NadA as a Potential Vaccine Candidate in Neisseria meningitidis. International journal of molecular and cellular medicine. 2018;7(1):53.
  • 19. Jain A, Tripathi P, Shrotriya A, Chaudhary R, Singh A. In silico analysis and modeling of putative T cell epitopes for vaccine design of Toscana virus. 3 Biotech. 2015;5(4):497-503.
  • 20. Dar HA, Zaheer T, Shehroz M, Ullah N, Naz K, Muhammad SA, et al. Immunoinformatics-Aided Design and Evaluation of a Potential Multi-Epitope Vaccine against Klebsiella Pneumoniae. Vaccines. 2019;7(3):88.
  • 21. Guruprasad K, Reddy BB, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, Design and Selection. 1990;4(2):155-61.
  • 22. Jenssen H, Aspmo SI. Serum stability of peptides. Peptide-based drug design: Springer; 2008. p. 177-86.
  • 23. Meza B, Ascencio F, Sierra-Beltrán AP, Torres J, Angulo C. A novel design of a multi-antigenic, multistage and multiepitope vaccine against Helicobacter pylori: an in silico approach. Infection, Genetics and Evolution. 2017;49:309-17.
  • 24. Hex protein protein docking [internet]. [cited 2020 Jan 12]. http://hex.loria.fr/manual800/hex_manual.pdf.
  • 25. Diphtheria [internet]. [cited 2020 Jan 02]. Protein Data Bank [internet]. [cited 2020 Jan 13]. http://www.rcsb.org/ structure/5V4N).
  • 26. Diphtheria [internet]. [cited 2020 Jan 02]. https:// en.wikipedia.org/wiki/Diphtheria
  • 27. Centers for Disease Control and Prevention. Diphtheria [internet]. [cited 2020 Jan 02]. https://www.cdc.gov/ diphtheria/about/index.html
  • 28. Centers for Disease Control and Prevention. Diphtheria [internet]. [cited 2020 Jan 05]. https://www.cdc.gov/ diphtheria/about/symptoms.html
  • 29. Medical New Today. Diphtheria [internet]. [cited 2020 Jan 02]. https://www.medicalnewstoday.com/articles/159534. php
  • 30. NCBI. Chain B, Diphtheria Toxin [internet]. [cited 2020 Jan 02]. https://www.ncbi.nlm.nih.gov/protein/4AE1_B.
Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi-Cover
  • ISSN: 2146-247X
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2010
  • Yayıncı: Zehra ÜSTÜN