$MoS_2$ ile dekore edilmiş $TiO_2$ Nanotüp Elektrotların Sentezi, Karakterizasyonu ve Fotoelektrokimyasal Özellikleri

Bu araştırmada, $TiO_2$/$MoS_2$ nanokompozit elektrotlar fotoelektrokimyasal performanslarını araştırmak için sentezlenmiştir. İlk olarak, Ti folyo üzerinde anodik oksidasyonla $TiO_2$ nanotüp dizileri üretilmiştir. Daha sonra; $MoS_2$ nano yapıları, $TiO_2$ nanotüpler üzerinde hidrotermal yöntemle sentezlenmiştir. Hazırlanan nanokompozit elektrotlar, X-Ray kırınımı (XRD) ve alan emisyonu taramalı elektron mikroskobu (FESEM) kullanılarak karakterize edilmiştir. Geçici foto-akım tepkisi, elektrotların fotoelektrokimyasal aktivitesini araştırmak için analiz edilmiştir. Elde edilen sonuçlar, $TiO_2$ nanotüp dizileri etrafına $MoS_2$ nanoyapılar ile homojen bir şekilde kaplandığı belirlenmiştir. Ayrıca, $TiO_2$/$MoS_2$ yapıların $TiO_2$ elektrota göre daha iyi fotoelektrokimyal aktivite gösterdiği belirlenmiştir.

Synthesis, Characterization and Photoelectrochemical Properties of $MoS_2$ decorated $TiO_2$ Nanotubes Electrodes

In this research, $TiO_2$/$MoS_2$nanocomposite electrodes were synthesized to investigate the photoelectrochemical performances. Firstly, $TiO_2$ nanotubes were fabricated by anodic oxidation on Ti foil. Then, $MoS_2$ nanostructures were synthesis by hydrothermal method on $TiO_2$ nanotubes. The prepared nanocomposite films were characterized by using X-Ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The transient photocurrent response was analyzed to investigate photoelectrochemical activity of electrodes. The results show that TiO2 nanotube arrays coated with $MoS_2$ nanostructure homogeneously. Furthermore, $TiO_2$/$MoS_2$ nanocomposite electrode were shown better photoelectrochemical activity then bare $TiO_2$ electrode.

___

  • [1] K. V. Özdokur, B. B. Çırak, B. Caglar, Ç. Çırak, S. M. Karadeniz, T. Kılınç, Y. Erdoğan, and A. E. Ekinci, "Fabrication of TiO2/ZnO/Pt nanocomposite electrode with enhanced electrocatalytic activity for methanol oxidation," Vacuum., 155, 242–248, 2018.
  • [2] W. Jiang, Y. Pang, L. Gu, Y. Yao, Q. Su, W. Ji, and C. T. Au, "Structurally defined SnO2substrates, nanostructured Au/SnO2 interfaces, and their distinctive behavior in benzene and methanol oxidation," J. Catal. 349, 183–196, 2017.
  • [3] B. Chen, Y. Meng, J. Sha, C. Zhong, W. Hu, and N. Zhao, "Preparation of MoS 2 /TiO 2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective," Nanoscale, 10, 34–68, 2018.
  • [4] N. R. Mathews, E. R. Morales, M. A. Cortés-Jacome, and J. A. Toledo Antonio, "TiO2 thin films - Influence of annealing temperature on structural, optical and photocatalytic properties," Sol. Energy, 83, 1499–1508, 2009.
  • [5] M. Ni, M. K. H. Leung, D. Y .C. Leung, and K. Sumathy, "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production," Renew. Sustain. Energy Rev,11, 401–425, 2007.
  • [6] T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, and M. Batzill, "Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films," Sci. Rep., 4, 4043, 2015.
  • [7] C. B. D. Marien, T. Cottineau, D. Robert, and P. Drogui, "TiO2 nanotube arrays: Influence of tube length on the photocatalytic degradation of Paraquat," Appl. Catal. B Environ., 194, 1–6, 2016.
  • [8] M. Ge, Q. Li, C. Cao, J. Huang, S. Li, S. Zhang, Z. Chen, K. Zhang, S.S. Al-Deyab, and Y. Lai, "One-dimensional TiO2 nanotube photocatalysts for solar water splitting," Adv. Sci. 4, 1600152, 2017.
  • [9] A. Fujishima, T. N. Rao, and D. A. Tryk, "Titanium dioxide photocatalysis," J. Photochem. Photobiol. C Photochem. Rev, 1, 1–21, 2000.
  • [10] S. M. Ho, M. A. Mahadik, J. S. Jang, and V. N. Singh, "Metal oxide based chalcogenides heterostructure thin film photoanodes for photoelectrochemical solar hydrogen generation," Asian J. Chem, 31, 18–24, 2019.
  • [11] K. K. Kasem and A. Finley, "Photoelectrochemical studies on aqueous suspensions of some nanometal oxide/chalcogenide semiconductors for hydrogen production," Bull. Mater. Sci., 38, 303– 308, 2015.
  • [12] S.-M. Lam, J.-C. Sin, A. Z. Abdullah, and A. R. Mohamed, "Sunlight responsive WO3/ZnO nanorods for photocatalytic degradation and mineralization of chlorinated phenoxyacetic acid herbicides in water," J. Colloid Interface Sci., 450, 34–44, 2015.
  • [13] E. Binaeian, N. Seghatoleslami, M. J. Chaichi, and H. Allah Tayebi, "Preparation of titanium dioxide nanoparticles supported on hexagonal mesoporous silicate (HMS) modified by oak gall tannin and its photocatalytic performance in degradation of azo dye," Adv. Powder Technol, 27, 1047–1055, 2016.
  • [14] J. Wang, D. Zhang, J. Deng, and S. Chen, "Fabrication of phosphorus nanostructures/TiO2 composite photocatalyst with enhancing photodegradation and hydrogen production from water under visible light," J. Colloid Interface Sci., 516, 215–223, 2018.
  • [15] S. Sood, A. Umar, S. Kumar Mehta, and S. Kumar Kansal, "α-Bi2O3 nanorods: An efficient sunlight active photocatalyst for degradation of Rhodamine B and 2,4,6-trichlorophenol," Ceram. Int., 41, 3355–3364, 2015.
  • [16] H. An, X. He, J. Li, L. Zhao, C. Chang, S. Zhang, and W. Huang, "Design, synthesis of uniform Au nanoparticles modified Fe2 O3 –TiO2 coaxial nanotubes and their enhanced thermal stability and photocatalytic activity," New J. Chem., 39, 4611–4623, 2015.
  • [17] A. L. Linsebigler, G. Lu, and J. T. Yates, "Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results," Chem. Rev., 95, 735–758, 1995.
  • [18] J. Zhao, J. Yin, J. Zhong, T. Jiao, Z. Bai, S. Wang, L. Zhang, and Q. Peng," Facile preparation of a self-assembled Artemia cyst shell–TiO2 –MoS2 porous composite structure with highly efficient catalytic reduction of nitro compounds for wastewater treatment," Nanotechnology, 31, 085603, 2020.
  • [19] K. H. Hu, X. G. Hu, Y.F. Xu, and J. D. Sun, "Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange," J. Mater. Sci., 45, 2640–2648, 2010.
  • [20] L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, and Y. Yang, "MoS2 /TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution," Energy Environ. Sci., 11, 106–114, 2018.
  • [21] B. Bozkurt Çırak, S. M. Karadeniz, T. Kılınç, B. Caglar, A. E. Ekinci, H. Yelgin, M. Kürekçi, and Ç. Çırak, "Synthesis, surface properties, crystal structure and dye sensitized solar cell performance of TiO2 nanotube arrays anodized under different voltages," Vacuum, 144, 183–189, 2017
  • [22] L. Chen, X. Geng, L. Yang, W. Liang, and H. Zhu, "Versatile synthesis of molybdenum sulfide from confined spaces for efficient hydrogen evolution," Int. J. Hydrogen Energy, 42, 26659–26666, 2017.