Ga4X3Mn (X = P and As)’in Manyetik ve Elektronik Özelliklerinin İncelenmesi Üzerine İlk İlkeler Çalışması

Bu çalışmada, basit kübik yapıya sahip ve P4 ̅3m uzay grubu ile 215 uzay numarasına uyan Ga4X3Mn (X=P and As) sistemlerinin manyetik doğası ve ayrıca elektronik karakteristiği rapor edilmiştir. Ab initio simülasyon yöntemleri çerçevesinde gerçekleştirilen tüm hesaplamalar, Yoğunluk Fonksiyonel Teorisi (YFT) kapsamında meta-genelleştirilmiş gradient (META-GGA) yaklaşımı kullanılarak yapılmıştır. Dört farklı tip manyetik düzen için enerji-hacim eğrileri ve hesaplanan kohesif ve oluşum enerjileri göz önüne alındığında, bu bileşiklerin A-tipi antiferromanyetik yapıya sahip oldukları tespit edilmiştir. Ayrıca ilgili sistemlerin A-tipi antiferromanyetik düzende incelenen elektronik davranışları, elektronik bant yapılarında küçük bant boşluklarına sahip olmaları nedeniyle yarı-iletken olduklarını göstermektedir (Ga4P3Mn için Eb = 0.23 eV ve Ga4As3Mn için Eb = 0.16 eV).

The First-Principles Study On The Investigation of Magnetic and Electronic Properties of Ga4X3Mn (X = P and As)

In this study, the magnetic nature and also, electronic characteristics of Ga4X3Mn (X=P and As) systems, which have simple cubic structure confirming P4 ̅3m space group and 215 space number, have been reported. All calculations realized within the framework of ab initio simulation methods have been performed using the meta-generalized gradient (META-GGA) approach within the Density Functional Theory (DFT). In view of the energy-volume curves and the calculated cohesive and formation energies for considering four different types of magnetic orders, it has been detected that these compounds have A-type antiferromagnetic nature. Also, the examined electronic behaviors in the A-type antiferromagnetic order of the related systems show that all two compounds are semiconductors due to having small band gaps in their electronic band structures (Eg = 0.23 eV for Ga4P3Mn and Eg = 0.16 eV for Ga4As3Mn).

___

  • S. Mahajan, Handbook of Semiconductors, Elsevier, Amsterdam, 1994.
  • X. Yang, K. Wang, Y. Gu, H. Ni, X. Wang, T. Yang, and Z. Wang, “Improved efficiency of InAs/GaAs quantum dots solar cells by Si-doping,” Sol. Energ. Mat. Sol. C., 113, 144-147, 2013.
  • P.G. Linares, A. Marti, E. Antolin, I. Ramiro, E. Lopez, E. Hernandez, D.F. Marron, I. Artacho, I. Tobias, P. Gerard, C.Chaix, R.P. Campion, C.T. Foxon, C.R. Stanley, S.I. Molina, and A. Luque, “Extreme voltage recovery in GaAs:Ti intermediate band solar cells,” Sol. Energ. Mat. Sol. C., 108, 175-179, 2013.
  • A. Luque and A. Marti, “The intermediate band solar cell: progress toward the realization of an attractive concept,” Adv.Mater., 22, 160-174, 2010.
  • P. Lama, S. Hatcha, J. Wua, M. Tanga, V. G. Dorogan, Y. I. Mazur, G. J. Salamo, I. Ramiro, A. Seeds, and H. Liu, “Voltage recovery in charged InAs/GaAs quantum dot solar cells,” Nano Energy, 6, 159-166, 2014.
  • J.J. Fernandez, C. Tablero, and P. Wahnon, “Development and implementation of the exact exchange method for semiconductors using a localized basis set,” Comput. Mater. Sci., 28, 274-286, 2003.
  • T.Kita, R. Hasagawa, and T. Inoue, “Suppression of nonradiative recombination process in directly Si-doped InAs/GaAs quantum dots,” J. Appl. Phys., 110, 103511, 2011.
  • W. Liu, X. D. Wang, Y. Q. Li, Z. X. Geng, F. H. Yang, and J. M. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater Sol. Cells, 95, 693-698, 2011.
  • K.F. Wang, Y.X. Gu, X.G. Yang, T. Yang, and Z. G. Wang, “Si delta doping inside InAs/GaAs quantum dots with different doping densities,” J. Vac. Sci. Technol. B, 30, 041808, 2012.
  • K.A. Sablon, J.W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong enhancement of solar cell efficiency due to quantum dots with built-in charge,” Nano Letters, 11, 2311-2317, 2011.
  • M.K. Elsaid and E. Hijaz, “Magnetic susceptibility of coupled double GaAs quantum dot in magnetic fields,” Acta Phys. Pol. A, 131, 1491-1496, 2017.
  • M. Perny, V. Saly, V. Durman, J. Packa, J. Kurcz, M. Mikolasek, and J. Huran, “Electrical response of silicon heterojunction solar cells with transparent conductive oxide antireflective coating,” Acta Phys. Pol. A, 139, 39-45, 2021.
  • B. Pustelny and T. Pustelny, “Transverse acoustoelectric effect applying in surface study of GaP:Te(111),” Acta Phys. Pol. A, 116, 383-384, 2009.
  • P. Wahnon and C. Tablero, “Ab initio electronic structure calculations for metallic intermediate band formation in photovoltaic materials,” Phys. Rev. B, 65, 165115, 2002.
  • T. Ponken and T. Burinprakhon, “Microstructure, optical and electrical properties of thin films of galliumphosphorus - titanium alloys synthesized by asymmetric bipolar pulsed direct current magnetron sputtering,” Thin Solid Films, 681, 6-14, 2019.
  • C. Tablero, P. Wahnon, “Analysis of metallic intermediate-band formation in photovoltaic materials,” Appl. Phys. Lett., 82, 151-153, 2003.
  • J. Szczytko, W. Mac, A. Twardowski, F. Matsukura, and H. Ohno, “Antiferromagnetic p - d exchange in ferromagnetic Ga1-xMnxAs epilayers,” Phys. Rev. B, 59, 12935, 1999.
  • K. Z. Milowska and M. Wierzbowska, “Hole sp3 - character and delocalization in (Ga, Mn)As revised with pSIC and MLWF approaches - Newly found spin-unpolarized gap states of s-type below 1% of Mn,” Chem. Phys., 430, 7-12, 2014.
  • P. Palacios, P. Wahnon, and C. Tablero, “Ab initio phonon dispersion calculations for TixGanAsm and TixGanPm compounds,” Comput. Mater. Sci., 33, 118-124, 2005.
  • P. Palacios, J. J. Fernandez, K. Sanchez, J. C. Conesa, and P. Wahnon, “First-principles investigation of isolated band formation in half-metallic TixGa1-xP (x = 0.3125–0.25),” Phys. Rev. B, 73, 085206, 2006.
  • J.J. Fernandez, C. Tablero, and P. Wahnon, “Application of the exact exchange potential method for half metallic intermediate band alloy semiconductor,” J. Chem. Phys., 120, 10780-10785, 2004.
  • C. Tablero, A. Garcia, J. J. Fernandez, P. Palacios, and P. Wahnon, “First principles characterization of direct transitions for high efficiency new photovoltaic materials,” Comput. Mater. Sci., 27, 58-64, 2003.
  • P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, 50, 17953-17979, 1994.
  • W. Kohn and L. J. Sham, “Self-Consistent equations including exchange and correlation effects,” Phys. Rev. A, 140, A1133-A1138, 1965.
  • P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., 136, B864-B871, 1964.
  • G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B, 47, 558–561, 1993.
  • G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B, 54, 11169, 1996.
  • G. Kresse and D. Joubert, “From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method,” Phys. Rev. B, 59, 1758, 1999.
  • J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett, 77, 3865-3868, 1996.
  • J. Sun, A. Ruzsinszky, and J. P. Perdew, “Strongly Constrained and Appropriately Normed Semilocal Density Functional,” Phys. Rev. Lett., 115, 036402, 2015.
  • H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, 13, 5188-5192, 1976.
  • R. W. G. Wyckoff, Crystal Structures, Wiley, New York, 1963.
  • F. Han, A Modern Course in the Quantum Theory of Solids, World Scientific, Singapore, 2013.
  • A. L. Parrill and K. B. Lipkowitz, Reviews in Computational Chemistry, 29, 44-47, Wiley, 2016.
  • E. Zhao and Z. Wu, “Electronic and mechanical properties of 5d transition metal mononitrides via first principles,” J. Solid State Chem., 181, 2814-2827, 2008.
  • P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, “Universal features of the equation of state of solids,” J. Phys. Cond. Matter, 1, 1941-1963, 1989.
  • K. Momma and F. Izumi, “VESTA: a three-dimensional visualization system for electronic and structural analysis,” Appl. Crystallogr., 41, 653-658, 2008.
  • A. Gencer and G. Surucu, “Electronic and lattice dynamical properties of Ti2SiB MAX phase” Mater. Res. Express, 5, 076303, 2018.