Yeni Diz Protezleri Geliştirmede Dinamik Yönlendirme (FD) Simülasyonunun Rolü

Ampüte bireyler mekanik olarak pasif protezlerinin kontrol ve güç eksikliğinden dolayı çeşitli yürüme sorunları ile karşı karşıyadırlar. Bu sorunların arasında hayati önem taşıyanlar ise denge ile ilgili olanlardır; zira düşmeler ve düşme korkusu, daha çok güç sarfı gerektiren aktivitelerden kaçınmaya neden olabilmektedir. Transfemoral yapay bir uzuv, diz üstünden eksik olan bir bacağın yerini almaktadır. Bir transfemoral protez, bir yuva, diz, gövde, ayak ve süspansiyon mekanizmasından oluşmaktadır. Bu çalışmada, sağlıklı bir bireyin mevcut 3B nöromüsküler modeli, 3R60’lı bir transfemoral ampüte bireyi betimleyecek şekilde uyarlanmıştır. Bu model, 0,9 m/s ve 1,2 m/s yürüme hızlarında Matlab 2019b Simulink programı ile simüle edilmiştir. Sağlıklı model ile ampüte model arasındaki farklar literatür sonuçlarıyla karşılaştırılarak modelin performansı değerlendirilmiştir. Simüle edilen ampüte yürüyüşü, özellikle 1,2 m/s hızda literatür ile uyumlu bulunmuştur. Modelin koronal düzlemdeki salınımı 0,9 m/s’dir; bu da dengeyi korumanın zor olduğunu göstermektedir. Düşmeyi önleme konusunda protez bacakta bir jiroskop kontrol momenti ile bir örnek çalışma da yapılmıştır. Jiroskop kontrol momenti, düşmeyi önlemek için dizin esnemesini (bükülmesini) ve uzamasını artırmaktadır. 1,2 m/s hızda dönme hareketi (whirligig) için atılan adım, ekstra kontrol süresi sayesinde daha dengeli olmuştur.

The Role of Forwarding Dynamic (FD) Simulation in Developing New Knee Prosthesis

Amputees face several gait deficits due to their mechanically passive prostheses' lack of control and power. Of crucial importance among these deficits are those related to balance, as falls and a fear of falling can cause an avoidance of activity that leads to further debilitation. A transfemoral an artificial limb replaces a missing leg above the knee. A transfemoral prosthesis consists of a socket, knee, shank, foot, and mechanism for the suspension. The current 3D neuromuscular model of a healthy person in this study is adjusted to depict a transfemoral amputee with a 3R60. The model is simulated by Matlab 2019b Simulink program with a walking speed of 0.9 m/s and 1.2 m/s. The model's performance is assessed by comparing the distinctions between the healthy model and the amputee to the literature results. The amputee gait simulated is in keeping with the literature, particularly at speeds of 1.2 m/s. The oscillations of the model in the coronal plane are 0.9 m/s, indicating that balance is difficult to maintain. A case study was also conducted with a gyroscope control moment in the prosthetic shank on fall prevention. The gyroscope control moment enhances flexing the knee and extending it to prevent a drop. The step was more balanced with the extra control time whirligig at 1.2 m/s.

___

  • [1] Barnes, J. A., Eid, M. A., Creager, M. A., Goodney, P. P., 2020. Epidemiology and Risk of Amputation in Patients With Diabetes Mellitus and Peripheral Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 40(8),1808-1017.
  • [2] Isaacson, B. M., Weeks, S. R., Pasquina, P. F., Webster, J. B., Beck, J.P., Bloebaum, R. D., 2010. The road to recovery and rehabilitation for injured service members with limb loss: a focus on Iraq and Afghanistan, US Army Medical Department Journal. (Erişim Tarihi: 15.03.2022).
  • [3] Whiting, D. R., Guariguata, L., Weil, C., Shaw, J., 2011. IDF Diabetes Atlas: Global Estimates of the Prevalence of Diabetes for 2011 and 2030. Diabetes Research and Clinical Practice, 94(3), 311-321.
  • [4] Sahu, A., Sagar, R., Sarkar, S., Sagar, S., 2016. Psychological Effects of Amputation: A Review of Studies From India. Industrial Psychiatry Journal. 25(1), 4.
  • [5] Campbell, J. H., Stevens, P. M., Wurdeman, S. R., 2020. OASIS 1: Retrospective Analysis of Four Different Microprocessor Knee Types, Journal of Rehabilitation and Assistive Technologies Engineering. 7, 1-10.
  • [6] Waters, R. L., Perry, J., Antonelli, D.A., Hislop, H.1976. Energy Cost of Walking of Amputees: The İnfluence of Level of Amputation. J Bone Joint Surg Am, 58(1), 42-46.
  • [7] Boonstra, A. M., Schrama, J., Fidler, V., Eisma, W. H., 1994. The Gait of Unilateral Transfemoral Amputees. Scandinavian Journal of Rehabilitation Medicine, 26(4), 217-223.
  • [8] Chin, T., Sawamura, S., Shiba, R., Oyabu, H., Nagakura, Y., Takase, I., Machida, K., Nakagawa, A. 2003. Effect of an Intelligent Prosthesis (IP) on the Walking Ability of Young Transfemoral Amputees: Comparison of IP Users With Able-Bodied People. American Journal of Physical Medicine & Rehabilitation, 82(6), 447-451.
  • [9] Gailey, R., Allen, K., Castles, J., Kucharik, J., Roeder, M., 2008. Review of Secondary Physical Conditions Associated With Lower-Limb Amputation and Long-Term Prosthesis Use. Journal of Rehabilitation Research and Development, 45(1), 15.
  • [10] Emani, S., Ramasamy, M., Shaari, K. Z., 2019. Discrete Phase-CFD Simulations of Asphaltenes Particles Deposition From Crude Oil in Shell and Tube Heat Exchangers, Applied Thermal Engineering, 149, 105-118.
  • [11] Crenshaw, J. R., Kaufman, K. R., Grabiner, M. D., 2013. Trip Recoveries of People With Unilateral, Transfemoral or Knee Disarticulation Amputations: Initial Findings, Gait and Posture, 38(3), 534-546. [12] Shandiz, M. A., Farahmand, F. A., Zohour, H. A., 2010. Dynamic Simulation of the Biped Normal and Amputee Human Gait. InMobile Robotics: Solutions and Challenges 2010, 1113-1120.
  • [13] Van den Bogert, A. J., Samorezov, S., Davis, B.L., Smith, W. A., 2012. Modeling and Optimal Control of an Energy-Storing Prosthetic Knee, Journal of Biomechanical Engineering, 134(5), 1 -8,
  • [14] Geng, Y., Yang, P., Xu, X., Chen, L., 2012. Design and Simulation of Active Transfemoral Prosthesis. In2012 24th Chinese Control and Decision Conference (CCDC) 2012 May 23, 3724-3728.
  • [15] Thatte, N., Geyer, H., 2015. Toward Balance Recovery With Leg Prostheses Using Neuromuscular Model Control. IEEE Transactions on Biomedical Engineering, 63(5), 904-913.
  • [16] Fletcher, M., 2017. Design and validation of a transfemoral amputee walking model with passive prosthesis swing phase control, PhD Thesis. University of Toronto (Canada).
  • [17] Matlab., 2019. 9.7.0.1190202 (R2019b). Natick, Massachusetts: The MathWorks Inc.
  • [18] Song, S., Geyer, H., 2015. A neural Circuitry That Emphasizes Spinal Feedback Generates Diverse Behaviours of Human Locomotion. The Journal of Physiology, 593(16), 3493-3511.
  • [19] Lawson, B. E., Varol, H. A., Sup, F., Goldfarb, M., 2010. Stumble Detection and Classification For an İntelligent Transfemoral Prosthesis. In2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010 Aug 31, 511-514.
  • [20] Jabeen, S., Berry, A., Geijtenbeek, T., Harlaar, J., Vallery, H., 2019. Assisting Gait With Free Moments or Joint Moments on the Swing Leg. In2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR) 2019 Jun 24, 1079-1084.
  • [21] Yin, K., Loken, K., Van de Panne, M., 2007. Simbicon: Simple Biped Locomotion Control. ACM Transactions on Graphics (TOG), 26(3),105-es.
  • [22] Hansen, N., 2006. The CMA Evolution Strategy: a Comparing Review. Towards a New Evolutionary Computation, 75-102.
  • [23] Fukuchi, C. A., Fukuchi, R. K., Duarte, M., 2018. A Public Dataset of Overground and Treadmill Walking Kinematics and Kinetics in Healthy İndividuals. PeerJ. 6, e4640.
  • [24] Drevelle, X., Villa, C., Bonnet, X., Loiret, I., Fodé, P., Pillet, H., 2014. Vaulting Quantification During Level Walking of Transfemoral Amputees, Clinical Biomechanics, 29(6), 679-83.
  • [25] Nolan, L., Wit, A., Dudziñski, K., Lees, A., Lake, M., Wychowañski, M., 2003. Adjustments in Gait Symmetry With Walking Speed in Trans-Femoral and Trans-Tibial Amputees, Gait and Posture, 17(2), 142-151.
  • [26] Schaarschmidt, M., Lipfert, S. W., Meier-Gratz, C., Scholle, H. C., Seyfarth, A., 2012. Functional Gait Asymmetry of Unilateral Transfemoral Amputees, Human Movement Science, 31(4), 907-917.
  • [27] Blumentritt, S., Scherer, H. W., Wellershaus, U., Michael, J. W., 1997. Design Principles, Biomechanical Data and Clinical Experience With a Polycentric Knee Offering Controlled Stance Phase Knee Flexion: A Preliminary Report, JPO: Journal of Prosthetics and Orthotics, 9(1), 18-24.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi