Energy and Exergy Analyses of CO2/HFE7000 Cascade Cooling System

In this study, a new refrigerant HFE7000, has been investigated thermodynamically in the cascade cooling system. Energy (COP) and exergy efficiency of cascade cooling system with CO2/HFE7000 refrigerants are performed. In this regard, the impacts of various parameters on the COP and exergy efficiency and exergy destruction rate of CCS are studied. Moreover, the CO2 refrigerant is used in the low-temperature circuit and HFE7000 is used in the high-temperature circuit. The COP and exergy efficiency of cascade cooling system are found as 2.313 and 0.5482, for cooling application. In the last section, comparison with R134a refrigerant is done, which is widely used in cascade cooling system.

___

  • [1] Annex 49, 2007. Energy Conservation in Buildings and Community Systems Low Exergy Systems for High Performance Buildings and Communities, homepage: http://www.annex49.com,
  • [2] Chakravarthy, V.S., Shah, R.K., Venkatarathnam, G., 2011. A review of refrigeration methods in the temperature range 4-300K. Journal of Thermal Science and Engineering Applications, 3(2011), 1-18.
  • [3] Yulong, S., Dongzhe, L., Dongfang, Y., Lei, Jin, Feng, C., Xiaolin W. 2017. Performance comparison between the combined R134a/CO2 heat pump and cascade R134a/CO2 heat pump for space heating, International journal of Refrigeration, 74,(2017), 592–605
  • [4] Sarkar, J., Bhattacharyya, S., Gopal, M.R. 2006. Simulation of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications. Int. J. Refrigeration, 29(2006), 735–743.
  • [5] Mosaffa, A.H., L. Farshi G. C.A. 2016. Infante Ferreira, M.A. Rosen, Exergoeconomic and environmental analyses of CO2/NH3 cascade refrigeration systems equipped with different types of flash tank intercoolers, Energy Conversion and Management 117 (2016) 442–453
  • [6] Lee, TS., Liu, CH., Chen, TW. 2006. Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems. Int J Refrig, 29(2006), 1100–8.
  • [7] Kilicarslan, A., Hosoz, M. 2010. Energy and irreversibility analysis of a cascade refrigeration system for various refrigerant couples. Energy Convers Manage, 51 (2010), 2947–54.
  • [8] Yılmaz, F., Selbas, R., Ozgur, A.E., Balta, M.T. 2016. Performance Analyses of CO2-N2O Cascade System for Cooling. Energy, Transportation and Global Warming, Green Energy and Technology, Elsevier, DOI 10.1007/978-3-319-30127-3_37.
  • [9] Sun, Z., Liang, Y., Liu, S., Ji, W., Zang, R., Liang, R., Guo, Z. 2016. Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A, Applied Energy, 184 (2016), 19–25.
  • [10] Parekh, A,, Tailor, P. 2011. Thermodynamic analysis of R507A–R23 cascade refrigeration system. International Journal of Aerospace Engineering , 5 (2011), 1919–23.
  • [11] Lee, T., Liu, C., Chen, T. 2006. Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems. Int J Refrig, 29 (7)(2006), 1100–8.
  • [12] Chen, Y., Han, W., Jin, H. 2017. Proposal and analysis of a novel heat-driven absorption compression refrigeration system at low temperatures. Appl Energy, 185(2) (2017), 2106–2116.
  • [13] Getu, H., Bansal, P. 2008. Thermodynamic analysis of an R744-R717 cascade refrigeration system. Int J Refrig, 31(1) (2008), 45–54.
  • [14] Dupont, 2016. ttp://www2.dupont.com/Refrigerants/en_US/uses_apps/automotive_ac/SmartAutoAC/flammabilit y_table.html#.UOxh4XdZiNc (Acc. Date: 12.10. 2016)
  • [15] Electronics Materials Solution Division. 2017. http://multimedia.3m.com/mws/media/121372O/3m-novec-7000-engineered-fluid-tds.pdf (Acc. Date: 11.04. 2017)
  • [16] Moran, M., 1982 “Availability Analysis: A Guide to Efficient Energy Usage”, Englewood Cliffs, NJ: Prentice-Hall,
  • [17] Bejan, A., Tsatsaronis, G., Moran, M. 1996. “Thermal Design and Optimization”, New York: Wiley Inter-science.
  • [18] Kotas, T. 1985. The exergy method of thermal plant analysis, Krieger Publishing Company
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi
Sayıdaki Diğer Makaleler

Türkiye’deki <em>Calopteryx splendens</em> (Harris, 1782) (Insecta: Odonata) Alttürlerinin Ekolojik Niş Modellemesi

Ali MİROĞLU, Sadık DEMİRTAŞ

Statistical Analysis of Electromagnetic Shielding Effectiveness of Metal Fiber Blended Fabrics

Ruslan ABDULLA, M Hilmi NİŞANCI, A Hayrettin YÜZER

Sliding Mode Based Self-Tuning PID Controller for Second Order Systems

ALPER BAYRAK

Nano ve Mikro Yapıdaki (Bi2O3)1-x-y(Sm2O3)x(Ho2O3)y Elektrolit Sistemlerinin Katı Oksit Yakıt Pili için Sentezlenmesi ve Faz Kararlılığı, Elektriksel ve Termal Özelliklerinin İncelenmesi ve Karşılaştırılması

YASİN POLAT

Mangan(III)asetat Eşliğinde 2-(3-Bromo-1,2,3,4-tetrahidro-1,4-epoksinaftalen-2-il)-3- hidroksi-5,5-dimetilsiklohekze-2-enon’un Sentezi ve Gümüş Tuzları İle Reaksiyonu

RAŞİT ÇALIŞKAN

Radon Concentration Measurements and Risk Assessments Around Uludağ Mountain (Bursa, Turkey)

AYŞEGÜL KAHRAMAN, GİZEM AKKAYA, Gökay KAYNAK

Bazı Sillojistik ve Kardinalite Kar¸sıla¸stırmalı Lojiklerin Türetimlerinin Cebirsel ve Etiketli Çizge Teorik Özellikleri Üzerine

SELÇUK TOPAL

Effects of Seed Weights on Plant Growth and Mineral Nutrition of Wheat and Bean Plants

İBRAHİM ERDAL, ZELİHA KÜÇÜKYUMUK, Süleyman Sefik KURT, Murat DEĞİRMENCİ

User Profile Analysis Using an Online Social Network Integrated Quiz Game

YUSUF YASLAN, Halil GÜLAÇAR, Melih Nazif KOÇ

Kaya Kesmede Koni Delici Sertliğinin Spesifik Enerjiye Olan Etkisi

Cihan DOĞRUÖZ, Naci BÖLÜKBAŞI