Deprem Etkisindeki TSD Yapılarda Histeretik Enerji Talebi: Analitik ve Ampirik Sonuçlar

Enerjiye dayalı sismik tasarımda deprem yer hareketi yapılara enerji girişi olarak dikkate alınmaktadır. Sisteme giren enerji kinetik enerji, sönüm enerjisi, elastik şekil değiştirme enerjisi ve histeretik enerji şeklindeki bileşenlerin toplamı olup histeretik enerji doğrudan yapısal hasar ile ilişkilidir. Literatürde histeretik enerjinin belirlenmesine yönelik histeretik modeli, sönüm oranını ve sünekliği esas alan çok sayıda ampirik bağıntı vardır. Buna karşın bu bağıntılar yer hareketinin özelliklerini dikkate almamaktadır. Bu çalışmada, enerjilerin hesabı için zaman tanım alanında doğrusal elastik olmayan analiz kullanılmış ve tek serbestlik dereceli (TSD) sisteme giren deprem enerjisi ile histeretik enerjinin yer hareketi süresi boyunca değişimi incelenmiştir. Dinamik analizlerde aynı zeminler üzerinde kaydedilmiş yedi adet yer hareketi ve farklı süneklik oranları ve doğal periyotları bulunan üç adet bilineer TSD sistem kullanılmıştır. Doğrusal olmayan dinamik analizlerin sonucunda birim kütle başına enerji girişi ve histeretik enerji grafiksel olarak elde edilmiştir. Histeretik enerji/toplam enerji oranı (EH/EI) ile diğer enerji bileşenlerinin giren enerjiye oranı araştırılmıştır. Doğrusal olmayan dinamik analizlerden elde edilen EH/EI oranları ile ampirik yaklaşımlara ait oranlarla karşılaştırılmış ve tutarlı sonuçlar elde edilmiştir. Ortalama EH/EI oranı 0.468 ile 0.488 arasında değişmektedir ki bu da toplam enerji girdisinin yarısına yakın kısmının doğrusal olmayan davranış yoluyla tüketildiğini göstermektedir.

Hysteretic Energy Demand in SDOF Structures Subjected to an Earthquake Excitation: Analytical and Empirical Results

In energy-based seismic design approach, earthquake ground motion isconsidered as an energy input to structures. The earthquake input energy is thetotal of energy components such as kinetic energy, damping energy, elastic strainenergy and hysteretic energy, which contributes the most to structural damage. Inliterature, there are many empirical formulas based on the hysteretic model,damping ratio and ductility in order to estimate hysteretic energy, whereas theydo not directly consider the ground motion characteristics. This paper usesnonlinear time history (NLTH) analysis for energy calculations and presents thedistribution of earthquake input energy and hysteretic energy of single-degree-offreedom(SDOF) systems over the ground motion duration. Seven real earthquakesrecorded on the same soil profile and three different bilinear SDOF systems havingconstant ductility ratio and different natural periods are selected to perform NLTHanalyses. As results of nonlinear dynamic analyses, input and hysteretic energiesper unit masses are graphically obtained. The hysteretic energy to input energyratio (EH/EI) is investigated, as well as the ratio of other energy components toenergy input. EH/EI ratios of NLTH analysis are compared to the results ofempirical approximations related EH/EI ratio and a reasonable agreement isobserved. The average of EH/EI ratio is found to be between 0.468 and 0.488meaning nearly half of the earthquake energy input is dissipated through thehysteretic behavior.

___

  • Housner, G.W. 1956. Limit Design of Structures to Resist Earthquakes. Proceedings of the 1st World Conference on Earthquake Engineering, Berkeley, CA, 186-198.
  • Zahrah, T.F., Hall, W.J. 1984. Earthquake Energy Absorption in SDOF Structures. Journal of Structural Engineering, 110(8), 1757-1772.
  • Akiyama, H. 1985. Earthquake Resistant Limit State Design for Buildings. University of Tokyo Press, Japan.
  • Kuwamura, H., Galambos, T.V. 1988. Earthquake Load for Structural Reliability. Journal of Structural Engineering, 115(6), 1446-1462.
  • Uang, C.M., Bertero, V.V. 1990. Evaluation of Seismic Energy in Structures. Earthquake Engineering & Structural Dynamics, 19(1), 77- 90.
  • Fajfar, P. 1992. Equivalent Ductility Factors, Taking into Account Low-Cycle Fatigue. Earthquake Engineering & Structural Dynamics, 21(10), 837-848.
  • Rodriguez, M. 1994. A Measure of the Capacity of Earthquake Ground Motions to Damage Structures. Earthquake Engineering & Structural Dynamics, 23(6), 627-643.
  • Chai, Y.H., Fajfar, P., Romstad, K.M. 1998. Formulation of Duration-Dependent Inelastic Seismic Design Spectrum. Journal of Structural Engineering, 124(8), 913-921.
  • Tso, W.K., Zhu, T.J., Heidebrecht, A.C. 1993. Seismic Energy Demands on Reinforced Concrete Moment-Resisting Frames. Earthquake Engineering & Structural Dynamics, 22(6), 533- 545.
  • Sucuoǧlu, H., Nurtuğ, A. 1995. Earthquake Ground Motion Characteristics and Seismic Energy Dissipation. Earthquake Engineering & Structural Dynamics, 24(9), 1195-1213.
  • Nakashima, M., Saburi, K., Tsuji, B. 1996. Energy Input and Dissipation Behaviour of Structures with Hysteretic Dampers. Earthquake Engineering & Structural Dynamics, 25(5), 483- 496.
  • Goel, R.K. 1997. Seismic Response of Asymmetric Systems: Energy-Based Approach. Journal of Structural Engineering, 123(11), 1444-1453.
  • Shen, J., Akbaş, B. 1999. Seismic Energy Demand in Steel Moment Frames. Journal of Earthquake Engineering, 3(04), 519-559.
  • Ye, L., Otani, S. 1999. Maximum Seismic Displacement of Inelastic Systems Based on Energy Concept. Earthquake Engineering & Structural Dynamics 28(12), 1483-1499.
  • Akbas, B., Shen, J., Hao, H. 2001. Energy Approach in Performance-Based Seismic Design of Steel Moment Resisting Frames for Basic Safety Objective. The Structural Design of Tall Buildings, 10(3), 193-217.
  • Decanini, L. D., Mollaioli, F. 2001. An Energy- Based Methodology for the Assessment of Seismic Demand. Soil Dynamics and Earthquake Engineering, 21(2), 113-137.
  • Wong, K.K.F., Yang, R. 2002. Earthquake Response and Energy Evaluation of Inelastic Structures. Journal of Engineering Mechanics, 128(3), 308-317.
  • Chou, C.C., Uang, C.M. 2003. A Procedure for Evaluating Seismic Energy Demand of Framed Structures. Earthquake Engineering & Structural Dynamics, 32(2), 229-244.
  • Wong, K.K. 2004. Inelastic Seismic Response Analysis Based on Energy Density Spectra. Journal of Earthquake Engineering, 8(2), 315- 334.
  • Chai, Y.H. 2005. Incorporating Low-Cycle Fatigue Model into Duration-Dependent Inelastic Design Spectra. Earthquake Engineering & Structural Dynamics, 34(1), 83-96.
  • Kalkan, E., Kunnath, S.K. 2008. Relevance of Absolute and Relative Energy Content in Seismic Evaluation of Structures. Advances in Structural Engineering, 11(1), 17-34.
  • Lei, C., Xianguo Y., Kangning L. 2008. Analysis of Seismic Energy Response and Distribution of RC Frame Structures. Proceedings of the 14th World Conference on Earthquake Engineering, October 12-17, Beijing, China.
  • Ye, L., Cheng, G., Qu, Z. 2009. Study on Energy- Based Seismic Design Method and Application on Steel Braced Frame Structures. Proceedings of the 6th International Conference on Urban Earthquake Engineering, March 3-4, Tokyo Institute of Technology, Tokyo, Japan, 417-428.
  • Kazantzi, A.K., Vamvatsikos, D. 2012. A Study on the Correlation Between Dissipated Hysteretic Energy and Seismic Performance. Proceedings of the 15th World Conference on Earthquake Engineering, September 24-28, Lisbon, Portugal.
  • Mezgebo, M.G. 2015. Estimation of earthquake input energy, hysteretic energy and its distribution in MDOF structures. Syracuse University, PhD Dissertation, 274 p, Syracuse, New York.
  • Dogru, S., Aksar, B., Akbas, B., Shen, J., Seker, O., Wen, R. 2016. Seismic Energy Demands in Steel Moment Frames. Applied Mechanics and Materials, 847, 210-221.
  • Donaire-Ávila, J., Benavent-Climent, A., Lucchini, A., Mollaioli, F. 2017. Energy-Based Seismic Design Methodology: A Preliminary Approach. Proceedings of the 16th World Conference on Earthquake Engineering, January 9-13, Santiago Chile, Paper No. 2106.
  • Fajfar, P., Vidic, T., Fischinger, M. 1989. Seismic Design in Medium- and Long Period Structures. Earthquake Engineering & Structural Dynamics, 18(8), 1133-1144.
  • Kuwamura, H., Kirino, Y., Akiyama, H. 1994. Prediction of Earthquake Energy Input from Smoothed Fourier Amplitude Spectrum. Earthquake Engineering & Structural Dynamics, 23(10), 1125-1137.
  • Decanini, L.D., Mollaioli, F. 1998. Formulation of Elastic Earthquake Input Energy Spectra. Earthquake Engineering & Structural Dynamics, 27(12), 1503-1522.
  • Chou, C.C., Uang, C.M. 2000. Establishing Absorbed Energy Spectra - An Attenuation Approach. Earthquake Engineering & Structural Dynamics, 29(10), 1441-1455.
  • Benavent-Climent, A., Pujades, L.G., López- Almansa, F. 2002. Design Energy Input Spectra for Moderate-Seismicity Regions. Earthquake Engineering & Structural Dynamics, 31(5), 1151-1172.
  • Kalkan, E., Kunnath, S.K. 2007. Effective Cyclic Energy as a Measure of Seismic Demand. Journal of Earthquake Engineering, 11(5), 725-751.
  • Teran-Gilmore, A., Jirsa, J.O. 2007. Energy Demands for Seismic Design Against Low-Cycle Fatigue. Earthquake Engineering & Structural Dynamics, 36(3), 383-404.
  • Amiri, G.G., Darzi, G.A., Amiri, J.V. 2008. Design Elastic Input Energy Spectra Based on Iranian Earthquakes. Canadian Journal of Civil Engineering, 35(6), 635-646.
  • Teran-Gilmore, A., Bahena-Arredondo, N. 2008. Cumulative Ductility Spectra for Seismic Design of Ductile Structures Subjected to Long Duration Motions: Concept and Theoretical Background. Journal of Earthquake Engineering, 12(1), 152- 172.
  • Benavent-Climent, A., López-Almansa, F., Bravo- González, D.A. 2010. Design Energy Input Spectra for Moderate-to-High Seismicity Regions Based on Colombian Earthquakes. Soil Dynamics and Earthquake Engineering, 30(11), 1129- 1148.
  • Tselentis, G.A., Danciu, L., Sokos, E. 2010. Probabilistic Seismic Hazard Assessment in Greece - Part 2: Acceleration Response Spectra and Elastic Input Energy Spectra. Natural Hazards and Earth System Sciences, 10(1), 41- 49.
  • Okur, A., Erberik, M.A. 2012. Adaptation of Energy Principles in Seismic Design of Turkish RC Frame Structures. Part I: Input Energy Spectrum. Proceedings of the 15th World Conference on Earthquake Engineering, September 24-28, Lisbon, Portugal.
  • Lopez-Almansa, F., Yazgan, A.U., Benavent- Climent, A. 2013. Design Energy Input Spectra for High Seismicity Regions Based on Turkish Registers. Bulletin of Earthquake Engineering, 11(4), 885-912.
  • Dindar, A.A., Yalçın, C., Yüksel, E., Özkaynak, H., Büyüköztürk, O. 2015. Development of Earthquake Energy Demand Spectra. Earthquake Spectra, 31(3), 1667-1689.
  • Alıcı, F.S., Sucuoğlu, H. 2016. Prediction of Input Energy Spectrum: Attenuation Models and Velocity Spectrum Scaling. Earthquake Engineering & Structural Dynamics, (45)13, 2137-2161.
  • Fajfar, P., Vidic, T. 1994. Consistent Inelastic Design Spectra: Hysteretic and Input Energy. Earthquake Engineering & Structural Dynamics, 23(5), 523-537.
  • Manfredi, G. 2001. Evaluation of Seismic Energy Demand. Earthquake Engineering & Structural Dynamics, 30(4), 485-499.
  • Riddell, R., Garcia, J.E. 2001. Hysteretic Energy Spectrum and Damage Control. Earthquake Engineering & Structural Dynamics, 30(12), 1791-1816.
  • Khashaee, P., Mohraz, B., Sadek, F., Lew, H.S. Gross, J.L. 2003. Distribution of Earthquake Input Energy in Structures. NISTIR 6903, Building and Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg.
  • Estes, K.R., Anderson, J.C. 2004. Earthquake Resistant Design Using Hysteretic Energy Demands for Low Rise Buildings. Proceedings of the 13th World Conference on Earthquake Engineering, August 1-6, Vancouver, Canada, Paper No. 3276.
  • Sawada, K., Matsuo, A., Ujiie, K. 2005. A Study on Hysteretic Plastic Energy Input into Single and Multi Degree of Freedom Systems Subjected to Earthquakes. WIT Transactions on The Built Environment, 81, 269-280.
  • Arroyo, D., Ordaz, M. 2007. Hysteretic Energy Demands for SDOF Systems Subjected to Narrow Band Earthquake Ground Motions. Applications to the Lake Bed Zone of Mexico City. Journal of Earthquake Engineering, 11(2), 147-165.
  • Arroyo, D., Ordaz, M. 2007. On the Estimation of Hysteretic Energy Demands for SDOF Systems. Earthquake Engineering & Structural Dynamics, 36(15), 2365-2382.
  • Prasanth, T., Ghosh, S., Collins, K.R. 2008. Estimation of Hysteretic Energy Demand Using Concepts of Modal Pushover Analysis. Earthquake Engineering & Structural Dynamics, 37(6), 975-990.
  • Bojorquez, E., Teran-Gilmore, A., Ruiz, S.E., Reyes-Salazar, A. 2011. Evaluation of Structural Reliability of Steel Frames: Interstory Drift Versus Plastic Hysteretic Energy. Earthquake Spectra, 27(3), 661-682.
  • Wang, F., Yi, T. 2012. A Methodology for Estimating Seismic Hysteretic Energy of Buildings. Civil Engineering and Urban Planning, 2012, 17-21.
  • Okur, A., Erberik, M.A. 2014. Adaptation of Energy Principles in Seismic Design of Turkish RC Frame Structures. Part I: Distribution of Hysteretic Energy. Proceedings of the 2nd European Conference on Earthquake Engineering and Seismology, August 25-29, Istanbul, Turkey.
  • Wang, F., Li, H.N., Yi, T.H. 2015. Energy Spectra of Constant Ductility Factors for Orthogonal Bidirectional Earthquake Excitations. Advances in Structural Engineering, 18(11), 1887-1899.
  • Akbaş, B., Akşar, B., Doran, B., Alacalı, S. 2016. Hysteretic Energy to Energy Input Ratio Spectrum in Nonlinear Systems. Dokuz Eylul University Faculty of Engineering Journal of Science and Engineering, 18(2), 239-254.
  • Khashaee, P. 2004. Energy-based seismic design and damage assessment for structures. Southern Methodist University, PhD Dissertation, Dallas, Texas.
  • PEER. 2017. Pacific Earthquake Engineering Research Center Strong Ground Motion Database. http://ngawest2.berkeley.edu/, (Access Date: 15.04.2017).
  • Sivaselvan, M.V., Reinhorn, A.M. 2000. Hysteretic Models for Deteriorating Inelastic Structures. Journal of Engineering Mechanics, 126(6), 633- 640.
  • PRISM. 2010. A Software for Seismic Response Analysis of Single-Degree-of-Freedom-Systems. Earthquake Engineering Department of Architectural Engineering, INHA University.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi
Sayıdaki Diğer Makaleler

Beyin Anevrizmalarında Hemodinamik Kuvvetlerin Kanın Newtoniyen ve Newtoniyen Olmayan Durumlarında Hesaplamalı Akışkanlar Dinamiği ile İncelenmesi

Ali Bahadır OLCAY, Oktay Fırat URAL, Barış SÜSLÜ, Bahattin HAKYEMEZ

Bakır Oksit Nanoçiçeklerin Hidrotermal Sentezi ve Optik Özelliklerinin Karakterizasyonu

Aziz GENÇ

The Investigation of Heat Performance and Thermal Conductivity of Different Wall Materials at High Temperatures

GÖKHAN GÖRHAN, GÖKHAN KÜRKLÜ

Veritabanı Tasarımının Yazılım Performansına Etkisi: Normalizasyona karşı Denormalizasyon

Erdinç UZUN, Halil Nusret BULUŞ, Ahmet Cihat ERDOĞAN

Yeni Bir Yumuşak Anahtarlamalı SASGG-DGM DA-DA Yükseltici Dönüştürücü

Naim Süleyman TINĞ, Yakup ŞAHİN

Bazı Biyolojik Preparatların <i>Sitophilus granarius</i> (Coleoptera: Curculionidae) Erginlerine Etkileri

İsmail KARACA, Tuğba AYYILDIZ

A Comparison of Different Approaches to Document Representation in Turkish LanguageA Comparison of Different Approaches to Document Representation in Turkish Language

SAVAŞ YILDIRIM, TUĞBA YILDIZ

Tuz Biber Gürültülerinin Giderilmesi için k-Ortalama Algoritması Tabanlı Filtre Tasarımı

Gür Emre GÜRAKSIN

Ditiyofosfatlar Kullanılarak Yenilikçi Polisülfon Mikrokapsül Geliştirilmesi ve Ni(II) İyonu Giderim Performansının Belirlenmesi

Tuğba SARDOHAN KÖSEOĞLU, Esengül KIR, Berrin KIR, Ahmet Hamdi AYDIN, Mahrijemal ORAZOVA, ennet BAYRİYEVA, Dilnoza YOLDASHOVA, Fatma Nur ÇILGIN

EDA Çekirdekli Amin, TRIS ve Karboksil Sonlu PAMAM Dendrimerleri Kullanarak Ketoprofenin Çözünürlüğünü Geliştirme

Ali Serol ERTÜRK, Mustafa Ulvi GÜRBÜZ