Bilateral Tibial Stress Injuries in Recreational Athletes of Army

Objective: Lower extremity stress injuries cause moderate to severe functional restrictions that frequently preclude attendance in sports, recreational and occupational activities involving vigorous, repetitive lower limb training. The purpose of this study is to evaluate the relation between diagnosis and symptom duration and exercise periods in cases with bilateral stress injuries diagnosed by physical examination and radionuclide imaging. Materials and Methods: Twenty-five patients pre-diagnosed with bilateral stress injuries, aged between 19 and 35 years (3 female, 22 male) were enrolled in this study. Patient anamnesis, demographic information, the time span of painful period, duration of exercise per week, bones scans and SPECT/CT findings were evaluated. Stress injury groups were identified as bilateral shin splints (SS), bilateral stress fractures (SF), shin splint and stress fractures (SS+SF) according to their uptake properties on three phase bone scan (TPBS) and SPECT/CT images and physical examination findings. Results: There were no statistically significant differences between the groups according to age, and duration of symptoms (χ2 = 3,327, p=0,344). Conclusion: Bilateral stress injury is a rare condition in military personnel and athletes. Duration of exercise seems to be the major risk factor for the stress injury development.

Rekreasyonel Asker Sporcularda Bilateral Tibia Stres Yaralanmaları

Amaç: Alt ekstremite stres yaralanmaları, güçlü, tekrarlayan alt ekstremite antrenmanını içeren spor, rekreasyonel ve mesleki aktivitelere sık sık katılımı engelleyen orta ila şiddetli fonksiyonel kısıtlamalara neden olur. Bu çalışmanın amacı, fizik muayene ve radyonüklid görüntüleme ile tanı konan bilateral stres yaralanmalı olgularda tanı ve semptom süresi ile egzersiz süreleri arasındaki ilişkiyi değerlendirmektir. Gereç ve Yöntemler: İki taraflı bacak ağrısı olan ve bilateral stres yaralanmalası düşünülen, 19 - 35 yaşları arasında (3 kadın, 22 erkek) 25 hasta çalışmaya dahil edildi. Hasta anamnezleri, demografik bilgiler, ağrılı süre, haftada egzersiz süresi, kemik taraması ve SPECT / CT bulguları değerlendirildi. Stres yaralanması grupları, üç faz kemik taraması (TPBS) ve SPECT / CT görüntüleri ile fizik muayene bulgularına göre bilateral shin splint (SS), bilateral stres kırıkları (SF), shin splint ve stres kırıkları (SS + SF) olarak tanımlandı. Bulgular: Gruplar arasında yaş ve semptom süresine göre istatistiksel olarak anlamlı fark saptanmadı (χ2 = 3,327, p = 0,344). Sonuç: Bilateral stres yaralanması askeri personelde ve sporcularda nadir görülen bir durumdur. Egzersiz süresi bilateral stress yaralanması gelişiminde ana risk faktörü olabilir.

Kaynakça

1. Rome K, Handoll HHG, Ashford RL. Interventions for preventing and treating stress fractures and stress reactions of bone of the lower limbs in young adults (Review). Cochrane Database Syst Rev. 2005;18(2).

2. Shaffer SW, Uhl TL. Preventing and treating lower extremity stress reactions and fractures in adults. J Athl Train. 2006;41(4):466-9.

3. Yeung SS, Yeung EW, Gillespie LD. Interventions for preventing lower limb soft-tissue running injuries (Review). Cochrane Database Syst Rev. 2011;6(7).

4. Malkoc M, Korkmaz O, Ormeci T, et al. An unusual stress fracture: Bilateral posterior longitudinal stress fracture of tibia. Int J Surg Case Rep. 2014;5:500-4.

5. Pihlajamäki H, Parviainen M, Kyröläinen H, et al. Regular physical exercise before entering military service may protect young adult men from fatigue fractures. BMC Musculoskelet Disord. 2019;20(1):126.

6. Ozgürbüz C, Yüksel O, Ergün M, et al. Tibial bone density in athletes with medial tibial stress syndrome: a controlled study. J Sports Sci Med. 2011;10(4):743-7.

7. Franklyn M, Oakes B. Aetiology and mechanisms of injury in medial tibial stress syndrome: Current and future developments. World J Orthop. 2015;18;6(8):577- 89.

8. Matcuk GR, Mahanty SR, Skalski MR, et al. Stress fractures pathophysiology clinical presentation imaging features and treatment options. Emerg Radiol. 2016;23(4):365-75.

9. Breithaupt MD. Zur Pathologie des menschlichen Fusses. Med Zeitg 1855;24:169-77.

10. Nattiv A, Kennedy G, Barrack MT, et al. Correlation of MRI grading of bone stress injuries with clinical risk factors and return to play: a 5-year prospective study in collegiate track and field athletes. Am J Sports Med. 2013;41(8):1930-41.

11. Brukner P. Sports injuries: overuse. In: Crossley K, Cook J, Cowan S, McConnell J, eds. Brukner& Khan’s Clinical Sports Medicine. 4th ed. Australia: McGraw- Hill; 2012.p. 25-41.

12. Yıldırım M, Gursoy R, Varoglu E, et al. 99mTc-MDP bone SPECT in evaluation of the knee in asymptomatic soccer players. Br J Sports Med. 2004;38(1):15-8.

13. Nye NS, Covey CJ, Sheldon L, et al. Improving Diagnostic Accuracy and Efficiency of Suspected Bone Stress Injuries. Sports Health. 2016;8(3):278-283.

14. Fredericson M, Jennings F, Beaulieu C, et al. Stress fractures in athletes. Top Magn Reson Imaging. 2006;17(5):309-25.

15. Baggaley M, Willy RW, Meardon SA. Primary and secondary effects of real-time feedback to reduce vertical loading rate during running. Scand J Med Sci Sports. 2017;27(5):501-7.

16. Pelletier-Galarneau M, Martineau P, Gaudreault M, et al. Review of running injuries of the foot and ankle: clinical presentation and SPECT-CT imaging patterns. Am J Nucl Med Mol Imaging. 2015;5(4):305-16.

17. Edwards PH Jr, Wright ML, Hartman JF. A practical approach for the differential diagnosis of chronic leg pain in the athlete. Am J Sports Med. 2005;33(8):1241- 9.

18. Kahanov L, Eberman LE, Games KE, et al. Diagnosis, treatment and rehabilitation of stress fractures in the lower extremity in runners. Open Acsess J Sports Med. 2015;6:87-95.

19. Dobrindt O, Hoffmeyer B, Ruf J, et al. Estimation of return- to-sports-time for athletes with stress fracture - an approach combining risk level of fracture site with severity based on imaging. BMC Musculoskelet Disord. 2012;13:139.

20. Moran DS, Evans RK, Haddad E. Imaging of lower extremity stress fracture injuries. Sports Med. 2008;38(4):345-56.

21. Shikare S, Samsi AB, Tilve GH. Bone imaging in sports medicine. Postgrad Med. 1997; 43(3):71-2.

22. Carroll JJ, Kelly SP, Foster JN, et al. Bilateral Proximal Tibia Stress Fractures through Persistent Physes. Case Rep Orthop. 2018;2018:8181547.

23. Miyamoto T, Oguma Y, Sato Y, et al. Elevated Creatine Kinase and Lactic Acid Dehydrogenase and Decreased Osteocalcin and Uncarboxylated Osteocalcin are Associated with Bone Stress Injuries in Young Female Athletes. Sci Rep. 2018;8(1):18019.

24. Reinking MF, Austin TM, Bennett J, et al. Lower extremity overuse bone injury risk factors in collegiate athletes: a pilot study. Int J Sports Phys Ther. 2015;10(2):155-67.

Kaynak Göster