Design and realization of dual band microstrip siw antenna

Herein, realization of a high performance dual band microstrip antenna via the use of Substrate Integrated Waveguide technology (SIW) has been studied. Firstly, a 3D Electromagnetic based SIW antenna design has been modeled in CST Microwave Studio. The proposed dual band antenna is aimed to operate at 10 & 24 GHz frequency. After obtaining an optimal simulated model, the proposed antenna is fabricated on Rogers’s 4350 high performance substrate. The simulation and measurement results of the proposed SIW antenna are compared. As it can be seen from the measurement results the proposed antenna achieves a measured gain characteristic of 6 and 7.2 dB at 10 & 22 GHz frequency with a S11 level of less than -10 dB.

___

  • [1] A.K Bhattacharjee., S.R Bhadra., D.R. Pooddar and S.K. Chowdhury, “Equivalence of impedance and radiation properties of square and circular microstrip patch antennas,” IEE Proc. vol.136, pp338-342, 1989.
  • [2] L. I.Basilio, M. A. Khayat, J. T.Williams, and S. A. Long, “The dependence of the input impedance on feed position of probe and microstrip line-fed patch antennas,” IEEE Trans. Antennas Propagat., vol. 49, no. 1, pp 45-47, 2001.
  • [3] 1. J.S. Roy, N. Chattoraj, and N. Swain, Short-circuited microstrip antennas for multiband wireless communications, Microwave Opt Technol Lett 48 (2006), 2372–2374
  • [4] L. Hong, H. Zhixiang and S. Dengzhi, “Design of a dual-band microstrip antenna,” 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Guilin, 2016, pp. 156-158. doi: 10.1109/ISAPE.2016.7833907
  • [5] A. Mounsef, I. Tabakh, M. E. Bakkali, Y. E. Gholb and N. El Amrani El Idrissi, “Design and simulation of a dual band microstrip patch antenna for an emergency medical service system,” 2017 International Conference on Wireless Networks and Mobile Communications (WINCOM), Rabat, 2017, pp. 1-4. doi: 10.1109/WINCOM.2017.8238175
  • [6] Belen MA, Mahouti P., 2018.Design and realization of quasi Yagi antenna for indoor application with 3D printing technology. Microwave and Optical Technology Letters, 60:2177–2181. https://doi.org/10.1002/mop.31319.
  • [7] A. A. Deshmukh, V. Pandita, R. Colaco and R. Doshi, “Dual band dual polarized modified circular microstrip antenna,” 2014 International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA), Mumbai, 2014, pp. 347-352.
  • [8] X. Dai, T. Zhou and G. Cui, “Dual-Band Microstrip Circular Patch Antenna With Monopolar Radiation Pattern,” in IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1004-1007, 2016.
  • [9] P. Mahouti, F. Güneş, M. A. Belen, A. Çalışkan, and S. Demirel, 2016. Design and Realization of Dual Band Microstrip Monopole Antenna”, MIKON 2016 - 21st International Conference on Microwaves, Radar and Wireless Communications, May 9-11, Krakow POLAND.
  • [10] A. Caliskan, M. A. Belen, P. Mahouti, S. Demirel, F. Günes, 2015. “Design of a Multiband Microstrip Patch Antenna with Defected Ground Structures”, European Microwave Week EUMW 2015, Paris, France.
  • [11] B. Yan, L. Wang, Z. Luo, D. Deng, L. Feng and H. Zheng, “Dual-band microstrip antenna fed by coaxial probe,” 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Guilin, 2016, pp. 228-230.
  • [12] O. Ayop, M. K. A. Rahim and T. Masri, “A dual band gap slotted patch electromagnetic band gap for dual band microstrip antenna,” 2008 IEEE International RF and Microwave Conference, Kuala Lumpur, 2008, pp. 322-325.
  • [13] G.Q. Luo et al., (2008) “Planar Slot Antenna Backed by Substrate Integrated Waveguide Cavity,” IEEE Antennas Wireless Propag. Lett., 7( 1), 236–239.
  • [14] G.Q. Luo et al,( 2009) “Development of Low Profile Cavity Backed Crossed Slot Antennas for Planar Integration,” IEEE Trans.Antennas Propag., 57(10)2972–2979
  • [15] W. Tan et al., (2005),“A Gain–Enhanced Microstrip–Fed Cavity-Backed Slot Antenna,” Process. Asia-Pacific Microw. Conf., Suzhou, China, 2, 4–7.
  • [16] M. Esquius-Morote, B.Fuchs, J.-f. Zürcher, and J.R. Mosig,(2013) “Novel thin and compact H-plane SIW horn antenna”, IEEE Transactions on Antennas and Propagation, 61(6)
  • [17] J. Lacik , (2012) “Circularly polarized SIW square ring-slot antenna for X-bandapplications”, Microw. Opt. Technol. Lett., 54: 2590–2594.
  • [18] Mehmet A. Belen, Filiz Güneş, Alper Çalışkan, Peyman Mahouti, Salih Demirel and Aysu Yıldırım, (2016), “Microstrip SIW Patch Antenna Design for X Band Application”, MIKON 2016 - 21st International Conference on Microwaves, Radar and Wireless Communications, May 9-11, Krakow POLAND
  • [19] Mehmet A. Belen, P.Mahouti, A. Çalışkan, A. Belen, (2017), “Modeling and Realization of Cavity-Backed Dual Band SIW Antenna” Applied Computational Electromagnetics Society Journal, Vol. 32, No. 11, November 2017, 974-978
  • [20] Mahouti, P, Belen, MA, Güneş, F. Performance enhancement of a microstrip patch antenna using substrate integrated waveguide frequency selective surface for ISM band applications. Microw Opt Technol Lett. 2018; 60: 1160– 1164. https://doi.org/10.1002/mop.31124
  • [21] A-info, LB8180, (2015), 0.8-18 GHz Broadband Horn Antenna, Available at: http://www.ainfoinc.com/en/p_ant_h_brd.asp, Accessed on November 9.
  • [22] Belen, M. A., Güneş, F., Mahouti, P., & Belen, A. (2018). UWB Gain Enhancement of Horn Antennas Using Miniaturized Frequency Selective Surface. Applied Computational Electromagnetics Society Journal, 33(9).
  • [23] M. Esquius-Morote, B.Fuchs, J.-f. Zürcher, and J.R. Mosig, “Novel thin and compact h-plane siw horn antenna”, IEEE Transactions on Antennas and Propagation, June 2013, vol. 61, no. 6.
  • [24] A. Collado and A. Georgiadis, “24 GHz substrate integrated waveguide (SIW) rectenna for energy harvesting and wireless power transmission,” 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, 2013, pp. 1-3. doi: 10.1109/MWSYM.2013.6697772
  • [25] L. Sabri, N. Amiri and K. Forooraghi, “Dual-Band and Dual-Polarized SIW-Fed Microstrip Patch Antenna,” in IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1605-1608, 2014. doi: 10.1109/LAWP.2014.2339363
  • [26] T. Cheng, W. Jiang, S. Gong and Y. Yu, “Broadband SIW Cavity-Backed Modified Dumbbell-Shaped Slot Antenna,” in IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 5, pp. 936-940, May 2019. doi: 10.1109/LAWP.2019.2906119