Optimization and modeling of the workpiece position

This paper presents an approach for the manufacturing tolerances optimization under the positioning effect.This work is organized around two axes. The first axis addresses the problem of manufacturing errors due to the free position of the part (without tightening). In this approach, we have modeled the positioning defects by using the small displacement torsor to determine the optimal distribution of the supports (plane support, linear support and point support). The second axis is dedicated to the modeling and positioning optimization under the tightening effect. In this section the defects have been modeled by the reaction torsors under the optimal position constraint. These models have been exploited to develop a tool for the optimal distribution, calculation of manufacturing dimensions, deviations and torsors of small displacements.

___

  • [1] Adesta, E. Y. T., &Riza, M. (2018, March). Comparative Investigation on Tool Wear during End Milling of AISI H13 Steel with Different Tool Path Strategies. In IOP Conference Series: Materials Science and Engineering (Vol. 343, No. 1, p. 012020). IOP Publishing.https://doi.org/10.1088/1757-899X/343/1/012020
  • [2] Li, L., Deng, X., Zhao, J., Zhao, F., & Sutherland, J. W. (2018). Multi-objective optimization of tool path considering efficiency, energy-saving and carbon-emission for free-form surface milling. Journal of Cleaner Production, 172, 3311-3322.https://doi.org/10.1016/j.jclepro.2017.07.219
  • [3] Yuen, A., &Altintas, Y. (2018). Geometric Error Compensation With a Six Degree-of–Freedom Rotary Magnetic Actuator. Journal of Manufacturing Science and Engineering, 140(11), 111016.doi: 10.1115/1.4040938
  • [4] Cui, G., Lu, Y., Li, J., Gao, D., & Yao, Y. (2012). Geometric error compensation software system for CNC machine tools based on NC program reconstructing. The International Journal of Advanced Manufacturing Technology, 63(1-4), 169-180. https://doi.org/10.1007/s00170-011-3895-0
  • [5] Chen, G. S., Mei, X. S., & Li, H. L. (2013). Geometric error modeling and compensation for large-scale grinding machine tools with multi-axes. The International Journal of Advanced Manufacturing Technology, 69(9-12), 2583-2592.https://doi.org/10.1007/s00170-013-5203-7
  • [6] Miao, E. M., Gong, Y. Y., Niu, P. C., Ji, C. Z., & Chen, H. D. (2013). Robustness of thermal error compensation modeling models of CNC machine tools. The International Journal of Advanced Manufacturing Technology, 69(9-12), 2593-2603.https://doi.org/10.1007/s00170-013-5229-x
  • [7] Cui, G., Lu, Y., Gao, D., & Yao, Y. (2012). A novel error compensation implementing strategy and realizing on Siemens 840D CNC systems. The International Journal of Advanced Manufacturing Technology, 61(5-8), 595-608.https://doi.org/10.1007/s00170-011-3747-y
  • [8] Bosetti, P., &Bruschi, S. (2012). Enhancing positioning accuracy of CNC machine tools by means of direct measurement of deformation. The International Journal of Advanced Manufacturing Technology, 58(5-8), 651-662. https://doi.org/10.1007/s00170-011-3411-6
  • [9] Wang, S. M., Yu, H. J., Lee, C. Y., & Chiu, H. S. (2016). Study of on-machine error identification and compensation methods for micro machine tools. Measurement Science and Technology, 27(8), 084001.https://doi.org/10.1088/0957-0233/27/8/084001
  • [10] Copenhaver, R., Schmitz, T., & Smith, S. (2018). Stability analysis of modulated tool path turning. CIRP Annals, 67(1), 49-52.https://doi.org/10.1016/j.cirp.2018.03.010
  • [11] Salehi, M., Schmitz, T. L., Copenhaver, R., Haas, R., &Ovtcharova, J. (2019). Probabilistic Sequential Prediction of Cutting Force Using Kienzle Model in Orthogonal Turning Process. Journal of Manufacturing Science and Engineering, 141(1), 011009.doi: 10.1115/1.4041710
  • [12] Yang, J., Shi, H., Feng, B., Zhao, L., Ma, C., &Mei, X. (2015). Thermal error modeling and compensation for a high-speed motorized spindle. The International Journal of Advanced Manufacturing Technology, 77(5-8), 1005-1017.https://doi.org/10.1007/s00170-014-6535-7
  • [13] Fu, G., Fu, J., Shen, H., Yao, X., & Chen, Z. (2015). NC codes optimization for geometric error compensation of five-axis machine tools with one novel mathematical model. The International Journal of Advanced Manufacturing Technology, 80(9-12), 1879-1894.https://doi.org/10.1007/s00170-015-7162-7
  • [14] Ding, S., Huang, X., Yu, C., & Liu, X. (2016). Novel method for position-independent geometric error compensation of five-axis orthogonal machine tool based on error motion. The International Journal of Advanced Manufacturing Technology, 83(5-8), 1069-1078.https://doi.org/10.1007/s00170-015-7642-9
  • [15] Li, Z., Yang, J., Fan, K., & Zhang, Y. (2015). Integrated geometric and thermal error modeling and compensation for vertical machining centers. The International Journal of Advanced Manufacturing Technology, 76(5-8), 1139-1150. https://doi.org/10.1007/s00170-014-6336-z
  • [16] Cheng, Q., Zhao, H., Zhang, G., Gu, P., & Cai, L. (2014). An analytical approach for crucial geometric errors identification of multi-axis machine tool based on global sensitivity analysis. The International Journal of Advanced Manufacturing Technology, 75(1-4), 107-121.https://doi.org/10.1007/s00170-014-6133-8
  • [17] Fu, G., Fu, J., Xu, Y., & Chen, Z. (2014). Product of exponential model for geometric error integration of multi-axis machine tools. The International Journal of Advanced Manufacturing Technology, 71(9-12), 1653-1667.https://doi.org/10.1007/s00170-013-5586-5
  • [18] Fu, G., Fu, J., Xu, Y., Chen, Z., & Lai, J. (2015). Accuracy enhancement of five-axis machine tool based on differential motion matrix: geometric error modeling, identification and compensation. International Journal of Machine Tools and Manufacture, 89, 170-181.https://doi.org/10.1016/j.ijmachtools.2014.11.005
  • [19] Ma, J., Lu, D., & Zhao, W. (2016). Assembly errors analysis of linear axis of CNC machine tool considering component deformation. The International Journal of Advanced Manufacturing Technology, 86(1-4), 281-289. https://doi.org/10.1007/s00170-015-8027-9
  • [20] Liu, K., Liu, Y., Sun, M., Wu, Y., & Zhu, T. (2016). Comprehensive thermal compensation of the servo axes of CNC machine tools. The International Journal of Advanced Manufacturing Technology, 85(9-12), 2715-2728.https://doi.org/10.1007/s00170-015-8142-7