A REVIEW ON THE RECENT INVESTIGATION TRENDS IN ABRASIVE WATERJET CUTTING AND TURNING OF HYBRID COMPOSITES

A REVIEW ON THE RECENT INVESTIGATION TRENDS IN ABRASIVE WATERJET CUTTING AND TURNING OF HYBRID COMPOSITES

Cutting with abrasive water jet is an effective method for many engineering materials. Owing to its ability providing close tolerances and dimensional accuracy as well as cutting of extremely hard materials, total using rate of abrasive water jet cutting (AWJC) in the industry rises day by day. In addition to cutting, turning of the many industrial materials can be turned into the practice with abrasive waterjet turning (AWJT) technology. In recent years, AWJC and AWJT become considerably popular cases in the machining of hybrid composite materials which consist of at least two unlike reinforcements and researches about this subject increase rapidly in order to elucidate process details and influences of input parameters. Water pressure, traverse speed, abrasive flow rate, standoff distance and abrasive particle mesh size are the most prominent parameters of the process. In this paper, abrasive waterjet cutting/turning applicability of hybrid composites was reviewed and an initiative was done to rake together the newest surveys published in the technical literature. Our purpose is to achieve detailed overview for AWJC/AWJT of hybrid composites and to emphasize feasibility of the AWJC/AWJT for them and to discuss future real application possibilities of the method

___

  • [1] Groover, M.P., (2010) “Fundamentals of Modern Manufacturing”, Fourth Edition, John Wiley &Sons, Inc., USA.
  • [2] Wang, J., Wong, W.C.K., (1999) “A study of abrasive waterjet cutting of metallic coated sheetsteels”, International Journal of Machine Tools and Manufacture, 39 (6): 855-870.
  • [3] Yuvaraj, N., Kumar, M.P., (2017) “Investigation of process parameters influence in abrasive water jet cutting of D2 steel”, Materials and Manufacturing Processes, 32 (2): 151–161.
  • [4] Niranjan, C.A., Srinivas, S., Ramachandra, M., (2018) “An experimental study on depth of cut of AZ91 magnesium alloy in abrasive water jet cutting”, Materials Today: Proceedings 5(1) Part 3: 2884- 2890.
  • [5] Hascalik, A., Çaydaş, U., Gürün, H., (2007) “Effect of traverse speed on abrasive waterjet machining of Ti–6Al–4V alloy”, Materials & Design, 28 (6): 1953-1957.
  • [6] Akkurt, A., Kulekçi, M.K., Şeker, U., Ercan, F., (2004) “Effect of feed rate on surface roughness in abrasive waterjet cutting applications”, Journal of Materials Processing Technology, 147 (3): 389-396.
  • [7] Momber, A.W., Kovacevic, R., (1997) “Test parameter analysis in abrasive water jet cutting of rocklike materials”, International Journal of Rock Mechanics and Mining Sciences, 34 (1): 17-25.
  • [8] Hamatani, G., Ramulu, M., (1990) “Machinability of high temperature composites by abrasive waterjet”, J. Eng. Mater. Technol., 112 (4): 381-386.
  • [9] Chena, L., Sioresa, E., Wong, W.C.K., (1998) “Optimising abrasive waterjet cutting of ceramic materials”, Journal of Materials Processing Technology, 74 (1-3): 251-254.
  • [10] Wang, T., Hou, R., Zhe, L., (2017) “Experimental investigation on the material removal of the ultrasonic vibration assisted abrasive water jet machining ceramics”, Advances in Materials Science and Engineering, Volume 2017, Article ID 1365786.
  • [11] Brown, J., (1998) “Advanced Machining Technology Handbook”, McGraw-Hill Publish, New York, USA.
  • [12] Manu, R., Rameshbabu, N., (2009) “An erosion-based model for abrasive waterjet turning of ductile materials”, Wear, 266 (11-12): 1091-1097.
  • [13] Kartal, F., (2017) “A review of the current state of abrasive water-jet turning machining Method”, International Journal of Advance Manufacturing Technology, 88:495–505.
  • [14] John, M.J., Pothan, L.A., Thomas, S., (2014) “Hybrid Composites”, 315-328.
  • [15] Orbulov, I.N., Szlancsik, A., (2018) “On the mechanical properties of aluminum matrix syntactic foams”, Adv. Eng. Mater., 20: 1-12.
  • [16] Gnanavelbabu, A., Rajkumar, K., Saravanan, P., (2018) “Investigation on the cutting quality characteristics of abrasive water jet machining of AA6061-B4C-hBN hybrid metal matrix composites”, Materials and Manufacturing Processes, 33 (12): 1313-1323.
  • [17] Artemenko, S.E., Kadykova, A., (2008) “Hybrid composite materials”, Fibre Chemistry, 40 (6): 490-492.
  • [18] Thakur, V.K., Thakur, M.K., Pappu, A., (2017) “Hybrid Polymer Composite Materials, Properties and Characterization”, 1th Edition, Woodhead Publishing Elsevier United Kingdom.
  • [19] Kanitkar, Y.M., Kulkarni, A.P., Wangikar, K.S., (2017) “Characterization of Glass Hybrid composite: A Review”, Materials Today: Proceedings, 4 (9): 9627-9630.
  • [20] Fukuda, H., (1984) “An advanced theory of the strength of hybrid composites”, J. Mater. Sci. 19(3): 974-982.
  • [21] Pegoretti, A., Fabbri, E., Migliaresi, C., Pilati, F., (2004) “Intraply and interply hybrid composites based on E-glass and poly (vinyl alcohol) woven fabrics: tensile and impact properties”, Polym. Int. 53(9): 1290-1297.
  • [22] Wang, X., Hu, B., Feng, Y., Liang, F., Mo, J., Xiong, J., (2008) “Low velocity impact properties of 3D woven basalt/aramid hybrid composites”, Compos. Sci. Technol., 68(2): 444-450.
  • [23] Chamis, C.C., Lark, R.F., (1977) “Hybrid composites, state-of-the-art review: analysis, design, application and fabrication”.
  • [24] Ashby, M., (2010) “Material and process selection charts”, Granta Design Limited, Cambridge,UK.
  • [25] Ferrante, L., Tirillo, J., Sarasini, F., Touchard, F., Ecault, R., Urriza, M.V., (2015) “Behaviour of woven hybrid basalt-carbon/epoxy composites subjected to laser shock wave testing: preliminary results”, Compos. B: Eng. 78, 162-173.
  • [26] Sozhamannan, C.G., Naveenkumar, K., Mathiarasu, A., Velmurugan, K., Venkatachalapathy, V. S. K., (2018) “Machining characteristics of Al/Ticp/Gr hybrid composites, Materials Today:Proceedings, 5(2): 5940-5946.
  • [27] Xavior, M.A., Kumar, J.P.A., (2017) “Machinability of hybrid metal matrix composite – a Review”, Procedia Engineering, 174, 1110-1118.
  • [28] Putz, M., Rennau, A., Dix, M., (2018) “High precision machining of hybrid layer composites by abrasive waterjet cutting”, Procedia Manufacturing, 21: 583-590.
  • [29] Lalmuan, S.K., Das, S., Chandrasekaran, M., Tamang, S.K., (2017) “Machining investigation on hybrid metal matrix composites- a review”, Materials Today: Proceedings, 4(8): 8167-8175.
  • [30] Sahu, K.K., Ballav, R., (2017) “Optimization of machining parameters of Aluminium based hybrid composites using Gray Relation Analysis”, Materials Today: Proceedings, 4(9): 9977-9981.
  • [31] Joel, J., Xavior, M.A., (2018) “Aluminium alloy composites and its machinability studies; a review”, Materials Today: Proceedings, 5(5): 13556-13562.
  • [32] Gowthamana M., Balamuruganb, K., Kumarb, P.M., Alib, S.K.A., Kumarb, K.L.M., Gopalb, N.R.W., (2018) “Electrical discharge machining studies on monel-super alloy”, Procedia Manufacturing, 20, 386-391.
  • [33] Shasikant, V., Roy, A.K., Kaushik K., (2014) “Effect and optimization of machine process parameters on MRR for EN19 and EN41 materials using Taguchi method”, Procedia Technology, 14, 204- 210.
  • [34] Kuppan, P., Rajadurai, A., Narayanan, S., (2008) “Influence of EDM process parameters in deep hole drilling of Inconel 718”, International of Journal of Advanced Manufacturing Technology, 38, 74-84.
  • [35] Kanagarajan, D., Karthikeyan, R., Palanikumar, K., Davim, J.P., (2008) “Optimization of electrical discharge machining characteristics of WC/Co composites using non-dominated sorting genetic algorithm (NSGA-II)”, International of Journal of Advanced Manufacturing Technology, 36, 1124-1132.
  • [36] Kumara, A., Bagala, D.K., Maitya, K.P., (2014) “Numerical Modeling of Wire Electrical Discharge Machining of Super alloy Inconel 718”, Procedia Engineering 97, 1512 – 1523.
  • [37] Suarez, T.R., Bartolome, J.F., Smirnov, A., Esteban, S.L., Díaz, L.A., Torrecillas, R., Moya,J.S., (2011) “Electroconductive alumina-TiC-Ni nanocomposites obtained by spark plasma sintering”, Ceram. Int., 37(5): 1631-1636.
  • [38] Puertas, I., Luis, C.J., Alvarez, L., (2004) “Analysis of the influence of EDM parameters on surface quality, MRR and EW of WCeCo”, J. Mater. Process. Technol., 154, 1026-1032.
  • [39] Khan, A.A., Ali, M., Shaffiar, M., (2006) “Relationship of surface roughness with current and voltage during wire EDM”, J. Appl. Sci., 2317-2320.
  • [40] Obara, H., Satou, H., Hatano, M., (2004) “Fundamental study on corrosion of cemented carbide during wire EDM”, J. Mater. Process. Technol., 149, 370-375.
  • [41] Shukla, M., (2013) “Abrasive Water Jet Milling. Nontraditional machining processes: Research advances”, Springer-Verlag London, Chapter 6, 177-203.
  • [42] Ahmed, T.M., Mesalamy, A.S.E., Youssef, A., Midany, T.T.E., (2018) “Improving surface roughness of abrasive waterjet cutting process by using statistical modeling”, CIRP Journal of Manufacturing Science and Technology, 22: 30-36.
  • [43] Shanmugam, D.K., Masood, S.H., (2009) “An investigation on kerf characteristics in abrasive waterjet cutting of layered composites”, Journal of Materials Processing Technology, 209 (8):3887- 3893.
  • [44] Liu, D., Huang, C., Wang, J., Zhu, H., Yao, P., Liu, Z.W., (2014) “Modeling and optimization of operating parameters for abrasive waterjet turning alumina ceramics using response surface methodology combined with Box–Behnken design”, Ceramics International, 40 (6): 7899-7908.
  • [45] Cárach J., Hloch, S., Hlaváček, P., Ščučka, J., Martinec, P., Petrů, J., Zlámal, T., Zeleňák, M., Monka, P., Lehocká, D., Krolczyk, J., (2016) “Tangential turning of Incoloy alloy 925 using abrasive water jet technology”, Int J Adv Manuf Technol., 82: 1747–1752.
  • [46] Cárach, J., Hloch, S., Hlaváček, P., Ščučka, J., (2016) “Tangential turning of Incoloy alloy 925 using abrasive water jet technology”, The International Journal of Advanced Manufacturing Technology, Volume 82, Issue 9–12, pp 1747–1752.
  • [47] Alsoufi, M.S., (2017) “State-of-the-art in abrasive water jet cutting technology and the promise for micro and nano-machining”, International Journal of Mechanical Engineering and Applications, 5 (1): 1-14.
  • [48] Hashish, M. (2004) Where abrasive waterjets shine. https://www.thefabricator.com/article/waterjetcutting/where-abrasive-waterjets-shine, Last Access: 17.06.2018.
  • [49] Momber, A.W., Kovacevic, R., (1998) “Priciples of Abrasive Waterjet Machining”, 1st edition, Springer London Limited.
  • [50] Schwartzentruber, J., Papini, M., (2015) “Abrasive waterjet micro-piercing of borosilicate Glass”, Journal of Materials Processing Technology, 219: 143-154.
  • [51] Khan, A.A., Haque, M.M., (2007) “Performance of different abrasive materials during abrasive water jet machining of glass”, Journal of Materials Processing Technology, 191 (1–3): 404-407.
  • [52] Nguyen, T., Wang, J., Li, W., (2015) “Process models for controlled-depth abrasive waterjet milling of amorphous glasses”, The International Journal of Advanced Manufacturing Technology, 77 (5-8): 1177–1189.
  • [53] Kumar, K.R., Sreebalaji, V.S., Pridhar, T., (2018) “Characterization and optimization of abrasive water jet machining parameters of aluminium/tungsten carbide composites”, Measurement, 117: 57-66. [54] El-Hofy, M., Helmy, M.O., Palafox, G.E., Kerrigan, K., Scaife, R., El-Hofy, H., (2018) “Abrasive Water Jet Machining of multidirectional CFRP laminates”, Procedia CIRP, 68, 535-540.
  • [55] Voit, M., Reinhart, G., Metzger, T., (2017) “Experimental study on water jet cutting of unidirectional carbon fiber fabrics”, Procedia CIRP, 66, 221-226.
  • [56] Prabhuswamy, N.R., Srinivasa, S., Vaslia, A., Sheshashayan, M., Venkatesh, S., Roongta, Y., (2018) “Machinability studies of aluminium 6061 cut by abrasive water jet”, Materials Today:Proceedings 5, 2865–2870.
  • [57] Niranjan, C.A., Srinivas, S., Ramachandra, M., (2018) “Effect of process parameters on depth of penetration and topography of AZ91 magnesium alloy in abrasive water jet cutting”, Journal of Magnesium and Alloys, 1-9.
  • [58] Kartal, F.,Yerlikaya, Z., Gökkaya, H., (2017) “Effects of machining parameters on surface roughness and macro surface characteristics when the machining of Al-6082 T6 alloy using AWJT”, Measurement, 216-222.
  • [59] Gnanavelbabua, A., Saravananb, P., Rajkumar, K., Karthikeyand, S., (2018) “Experimental investigations on multiple responses in abrasive waterjet machining of Ti-6Al-4V alloy”, Materials Today: Proceedings, 5, 13413-13421.
  • [60] Holmberg, J., Berglund, J., Wretland, A., Beno, T., (2018) “Evaluation of surface integrity after high energy machining with EDM, laser beam machining and abrasive water jet machining of alloy 718”, The International Journal of Advanced Manufacturing Technology, 1-17.
  • [61] Dumbhare, P.A., Dubey, S., Deshpande, Y.V., Andhare, A.B., Barve, P.S., (2018) “Modelling and multi-objective optimization of surface roughness and kerf taper angle in abrasive water jet machining of steel”, Journal of the Brazilian Society of Mechanical Sciences and Engineering 40(5): 259.
  • [62] Tiwari, T., Sourabh, S., Nag, A., Dixit, A.R., Mandal, A., Das, A.K., Mandal, N., Srivastava, A.K., (2018) “Parametric investigation on abrasive waterjet machining of alumina ceramic using response surface methodology”, IOP Conf. Series: Materials Science and Engineering, 377.
  • [63] Hlaváč, L.M., Hlaváčová, I.M., Geryk, V., (2017) “Taper of kerfs made in rocks by abrasive water jet (AWJ)”, The International Journal of Advanced Manufacturing Technology, 88(1–4): 443–449.
  • [64] Elmabrok, O.M., Badi, A.A.M., (2017) “An implementation of fuzzy logic technique to predict the material removal rate in abrasive water jet machining process”, Libyan Journal for Engineering Research, 1 (2): 30-33.
  • [65] Perec, A., (2018) “Experimental research into alternative abrasive material for the abrasive water jet cutting of titanium”, The International Journal of Advanced Manufacturing Technology, 97 (1-4): 1529-1540.
  • [66] Popan, I.A., Contiu, G., Campbell, I., (2017) “Investigation on standoff distance influence on kerf characteristics in abrasive water jet cutting of composite materials”, MATEC Web Conf. Cluj- Napoca, Romania.
  • [67] Arab, P.B., Celestino, T.B., (2017) “Influence of traverse velocity and pump pressure on the efficiency of abrasive waterjet for rock cutting”, Soils and Rocks, 40 (3): 255-262.
  • [68] Brozek, M., (2017) “Steel cutting using abrasive water jet”, Proceedings of the International Scientific Conference, Jelgava, Latvia.
  • [69] Coşansu, G., Çoğun, C., (2012) “An investigation on use of colemanite powder as abrasive in abrasive waterjet cutting (AWJC)”, Journal of Mechanical Science and Technology, 26 (8):2371- 2380.
  • [70] Wong. M.M., Lee. C.C., Mansor. A.F., (2018) “Kerf taper and delamination damage minimization of FRP hybrid composites under abrasive water-jet machining”, The International Journal of Advanced Manufacturing Technology, Volume 94, Issue 5–8, pp 1727–1744.
  • [71] Muthukrishnan, N., Babu, M.N., (2014) “Investigation on surface roughness in abrasive waterjet machining by the response surface method”, Journal Materials and Manufacturing Processes, 29 (11-12): 1422-1428.
  • [72] Shukla, R., Singh, D., (2017) “Experimentation investigation of abrasive water jet machining parameters using taguchi and evolutionary optimization techniques”, Swarm and Evolutionary Computation, 32: 167-183.
  • [73] Xu, W., Zhang, L., (2018) “Tool wear and its effect on the surface integrity in the machining of fibre-reinforced polymer composites”, Composite Structures, 188: 257-265.
  • [74] Khan, M.A., Kumar, A.S., Kumaran, S.T., Uthayakumar, M., Ko, T.J., (2018) “Effect of tool wear on machining GFRP and AISI D2 steel using alumina based ceramic cutting tools”, Silicon, 1: 1-6.
  • [75] Wang, J., (1999) “A machinability study of polymer matrix composites using abrasive waterjet cutting technology”, Journal of Materials Processing Technology, 94(1): 30-35.
  • [76] Wang, J., Guo, D.M., (2002) “A predictive depth of penetration model for abrasive waterjet cutting of polymer matrix composites”, Journal of Materials Processing Technology, 121(2-3): 390- 394.
  • [77] Riveiro, A., Quintero, F., Lusquiños, F., Val, J., Comesaña, R., Boutinguiza, M., Pou, J., (2012) “Experimental study on the CO2 laser cutting of carbon fiber reinforced plastic Composite”, Composites: Part A, 43: 1400–1409.
  • [78] Nag, A., Ščučka, J., Hlavacek, P., Klichová, D., Srivastava, A.K., Hloch, S., Foldyna, R.D.J., Zelenak, M., (2018) “Hybrid aluminium matrix composite AWJ turning using olivine and Barton garnet”, The International Journal of Advanced Manufacturing Technology, 94 (5–8): 2293–2300.
  • [79] Hlavacova, I.M., Geryk, M., (2017) “Abrasives for water-jet cutting of high-strength and thick hard materials”, International Journal of Advance Manufacturing Technology, 90:1217–1224.
  • [80] Nag, A., Srivastava, A.K., Dixit, A.R., Chattopadhyaya, S., Mandal, A., Klichová, D., Hlaváček, P., Zeleňák, M., Hloch, S., (2017) “Influence of abrasive water jet turning parameters on variation of diameter of hybrid metal matrix composite”, Applications of Fluid Dynamics, 495-504.
  • [81] Ming, I.W.M., Azmi, A.I., Chuan, L.C., Mansor, A.F., (2018) “Experimental study and empirical analyses of abrasive waterjet machining for hybrid carbon/glass fiber-reinforced composites for improved surface quality”, The International Journal of Advanced Manufacturing Technology, 95: 3809–3822.
  • [82] Rajesh, S., Ramnath, B.V., Jeykrishnan, J., Nathan, S.J., Karthik, M.R., (2018) “Optimization of machining parameters of aramid natural hybrid composite in abrasive water jet machining using taguchi method”, Advanced Science, Engineering and Medicine, 10 (3): 451-454.
  • [83] Sasikumar, K.S.K., Arulshri, K.P., Ponappa, K., Uthayakumar, M.A., (2018) “Study on kerf characteristics of hybrid aluminium 7075 metal matrix composites machined using abrasive water jet machining technology”, Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 232 (4): 690-704.
  • [84] Pahuja, R., Ramulu, M., Hashish, M., (2016) “Abrasive waterjet profile cutting of thick Titanium/Graphite Fiber Metal Laminate”, ASME 2016 International Mechanical Engineering Congress and Exposition, Volume 2: Advanced Manufacturing, Phoenix, Arizona, USA.
  • [85] Selvam, R., Karunamoorthy, L., Arunkumar, N., (2017) “Investigation on performance of abrasive water jet in machining hybrid composites”, Materials and Manufacturing Processes, 32 (6): 700–706.
  • [86] Gnanavelbabu, A., Saravanan, P., Rajkumar, K., Karthikeyan, S., Baskaran, R., (2018) Effect of abrasive waterjet machining parameters on hybrid AA6061-B4C- CNT composites”, Materials Today: Proceedings, 5: 13438–13450.
  • [87] Jani, S.P., Kumar, A.S., Khan, M.A., Kumar, M.U., (2016) “Machinability of hybrid natural fiber composite with and without filler as reinforcement”, Materials and Manufacturing Processes, 31 (10): 1393-1399.
  • [88] Srivastava, A.K., Nag, A., Dixit, A.R., Tiwari, S., Scucka, J., Zelenak, M., Hloch, S., Hlavacek, P., (2017) “Surface integrity in tangential turning of hybrid MMC A359/B4C/Al2O3 by abrasive waterjet”, Journal of Manufacturing Processes, 28 (1): 11-20.
  • [89] Irina, M.M.W., Azmi, A.I., Lee, C.C., (2016) “Machinability study of hybrid FRP composite using abrasive waterjet trimming technology”, Key Engineering Materials, 740: 118-124.
  • [90] Srivastava, A.K., Nag, A., Dixit, A.R., Scucka, J., Hloch, S., Klichová, D., Hlaváček, P., Tiwari, S., (2019) “Hardness measurement of surfaces on hybrid metal matrix composite created by turning using an abrasive water jet and WED”, Measurement, 131: 628-639.
  • [91] Raj, R.R., Kanagasabapathy, H., (2018) “Influence of abrasive water jet machining parameter on performance characteristics of AA7075-ZrSiO4-hBN hybrid metal matrix composites”, Material Research Express 5, 5(10).
Sigma Journal of Engineering and Natural Sciences-Cover
  • ISSN: 1304-7191
  • Başlangıç: 1983
  • Yayıncı: Yıldız Teknik Üniversitesi
Sayıdaki Diğer Makaleler

ARTIFICIAL NEURAL NETWORKS RESTRICTION FOR ROAD ACCIDENTS SEVERITY CLASSIFICATION IN UNBALANCED DATABASE

Maria Lígia CHUERUBIM, Alan VALEJO, Barbara Stolte BEZERRA, Irineu Da SILVA

A SAFETY STOCK MODEL BASED ON ORDER CHANGE-TO-DELIVERY RESPONSE TIME: A CASE STUDY FOR AUTOMOTIVE INDUSTRY

Murat ÇOLAK, Tuğçen HATİPOĞLU, Gülşen AYDIN KESKİN, Alpaslan FIĞLALI

EFFECTS OF INFILL WALLS ON FREE VIBRATION CHARACTERISTICS OF MULTI-STOREY FRAMES USING DYNAMIC STIFFNESS METHOD

Baran BOZYİGİT, Yusuf YESİLCE

SOME FIXED POINT RESULTS FOR CONTINUOUS FUNCTIONS ON AN ARBITRARY INTERVALS

Kadri Dogan DOGAN, Faik GURSOY, Vatan KARAKAYA

AN ELITIST GRAVITATIONAL SEARCH ALGORITHM BASED APPROACH FOR OPTIMAL PLACEMENT OF FAULT CURRENT LIMITERS IN POWER SYSTEMS

Ali ABDALI, Kazem MAZLUMI, Amir BAGHERI

DEGREE-BASED INVARIANTS OF MYCIELSKI CONSTRUCTION: IRREGULARITY, TOTAL IRREGULARITY, VARIANCE

Zeynep Nihan BERBERLER

QUINTIC B-SPLINE METHOD FOR NUMERICAL SOLUTION OF THE ROSENAU-BURGERS EQUATION

Reza ABAZARI, Kenan YILDIRIM

HEAT AND MASS TRANSFER IN MAGNETOHYDRODYNAMICS (MHD) FLOW OVER A MOVING VERTICAL PLATE WITH CONVECTIVE BOUNDARY CONDITION IN THE PRESENCE OF THERMAL RADIATION

B. Johnson AKINBO, Bakai I. OLAJUWON

AN EXPERIMENTAL STUDY ON DETECTING AND IMAGING CAVITY REGIONS INSIDE TREE TRUNK USING CIRCULAR BACK PROJECTION FOCUSING ALGORITHM

Serhat GÖKKAN, Betül YILMAZ, Caner ÖZDEMİR

MECHANICAL STRENGTH DEGRADATION OF SLAG AND FLY ASH BASED GEOPOLYMER SPECIMENS EXPOSED TO SULFURIC ACID ATTACK

Anıl NİŞ, Melis B. ALTUNDAL