Effects of Different Boron Doses on Germination, Seedling Growth and Relative Water Content of Linseed (Linum usitatissimum L.)

Effects of Different Boron Doses on Germination, Seedling Growth and Relative Water Content of Linseed (Linum usitatissimum L.)

Boron is one of the most important nutrients required for the growth and development of plants. However, boron deficiency or excess also affects the physiological development of plants such as germination and seedling development. In this study, the effects of boron applications of 0-8 ml L-1 (4 concentrations) in 2 linseed cultivars [Beyaz Gelin (C1) and Sarı Dane (C2)] were investigated under laboratory conditions. In the study; germination percentage (GP), mean germination time (MGT), seeding length (SL), root length (RL), seedling fresh weight (SFW), seedling dry weight (SDW), root fresh weight (RFW), root dry weight (RDW) and relative water content (RWC) parameters were examined. As a result of the study, it has been determined that there are decreases in the properties of the cultivars in terms of the parameters examined with boron applications. It has been determined that especially 8 mg L-1 application has a toxic effect and prevents seedling and root development.

___

  • Akçam-Oluk E, Demiray H (2004). The effects of boron on the growth of sambro no.3 sunflower (Helianthus annuus L.). Journal of Agriculture Faculty of Ege University, 41(1): 181-190.
  • Almansouri M, Kinet JM, Lutts S (2001). Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil, 231: 243-254
  • Arslan Ö, Çulha Erdal Ş, Ekmekçi Y (2022). Salt pretreatment-mediated alleviation of boron toxicity in safflower cultivars: growth, boron accumulation, photochemical activities, antioxidant defense response. Plants, 11: 2316. https://doi.org/10.3390/plants11172316
  • Arslanoglu ŞF, Sert S, Şahin, HA, Aytaç S, El Sabagh A (2022). Yield and yield criteria of flax fiber (Linum usititassimum L.) as influenced by different plant densities. Sustainability, 14: 4710. https://doi.org/10.3390/su14084710
  • Ashagre H, Hamza IA, Fita U, Estifanos E (2014). Boron toxicity on seed germination and seedling growth of safflower (Carthamus tinctorius L.). Herald Journal of Agriculture and Food Science Research, 3(1): 1-6.
  • Ateş E, Tekeli AS (2007). Salinity tolerance of persian clover (Trifolium resupinatum var. majus Boiss.) lines at germination and seedling stage. World Journal of Agricultural Sciences, 3(1): 71-79.
  • Ayvaz M, Guven A, Blokhina O, Fagerstedt KV (2016). Boron stress, oxidative damage and antioxidant protection in potato cultivars (Solanum tuberosum L.). Acta Agriculturae Scandinavica, Section B–Soil & Plant Science, 66(4): 302-316.
  • Baydar H, Erbaş S (2014). Yağ Bitkileri Bilimi ve Teknolojisi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Yayın No: 97. Isparta. s.313.
  • Beyaz R, Gürsoy M, Aycan M, Yıldız M (2018). The effect of boron on the morphological and physiological responses of sunflower seedlings (Helianthus annuus L.). Fresenius Environmental Bulletin, 27(5A): 3554-3560.
  • Bolat İ, Kara Ö (2017). Bitki besin elementleri: kaynakları, işlevleri, eksik ve fazlalıkları. Bartın Orman Fakültesi Dergisi, 19(1): 218-228
  • Culpan E, Arslan B, Çakır H (2019). Effect of boron on seed germination and seedling growth of safflower (Carthamus tinctorius L.). 1st International Symposium on Biodiversity Research, 2-4 May 2019; Çanakkale, Turkey, pp. 42-46.
  • Çelik H, Turan MA, Aşık BB, Öztüfekçi S, Katkat AV (2019). Effects of soil-applied materials on the dry weight and boron uptake of maize shoots (Zea mays L.) under high boron conditions. Communications in Soil Science and Plant Analysis, 50(7): 811-826.
  • Demirtaş A (2005). Bitkide bor ve etkileri. Atatürk Üniversitesi Ziraat Fakültesi Dergis,i 36(2): 217-225.
  • Demirtaş A (2006). Bor bileşikleri ve tarımda kullanımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 37(1): 111-115.
  • Donbaloğlu Bozca F, Leblebici S (2022). Interactive effect of boric acid and temperature stress on phenological characteristics and antioxidant system in Helianthus annuus L. South African Journal of Botany, 147: 391-399. https://doi.org/10.1016/j.sajb.2022.01.039
  • Dordas C, Chrispeels MJ, Brown PH (2000). Permeability and channel-mediated transport of boric acid across membrane vesicles ısolated from squash roots. Plant Physiology, 124: 1349-1362. Eraslan F, Inal A, Gunes A, Alpaslan M (2007). Boron toxicity alters nitrate reductase activity, proline accumulation, membrane permeability and mineral constituents of tomato and pepper plants. Journal of Plant Nutrition, 30(6): 981-994.
  • Eroğlu A, Topal S (2022). Bor içeriği farklı olan filtre atıklarının arpada (Hordeum vulgare L.) çimlenme ve bazı fizyolojik parametrelere etkisi. Doğu Fen Bilimleri Dergisi, 5(1): 46-54.
  • Eseceli H, Değirmencioğlu A, Kahraman R (2006). Omega yağ asitlerinin insan sağlığı yönünden önemi. Türkiye 9. Gıda Kongresi, 24-26 Mayıs 2006; Bolu, pp. 403-406.
  • Gezgin S, Hamurcu M (2006). Bitki beslemede besin elementleri arasındaki etkileşimin önemi ve bor ile diğer besin elementleri arasındaki etkileşimler. Selçuk Üniversitesi Ziraat Fakültesi Dergisi, 20(39): 24-31.
  • Gogus U, Smith C (2010). N-3 Omega fatty acids: a review of current knowledge. International Journal of Food Science & Technology, 45(3): 417-436.
  • Goldberg S. Glaubig RA (1985). Boron absorption on aluminum and ıron oxide minerals. Soil Science Society of America Journal, 49: 1374-1379.
  • Gökkaya TH, Arslan M (2023). The boron application effects on germination and seedling parameters of sorghum cultivars [Sorghum bicolor (L.) Moench] in drought. Yuzuncu Yıl University Journal of Agricultural Sciences, 33(1)140-149. https://doi.org/10.29133/yyutbd.1230518
  • Gürsoy M (2019). Importance of some oil crops in human nutrition. Turkish Journal of Agriculture-Food Science and Technology, 7(12): 2154-2158. https://doi.org/10.24925/turjaf.v7i12.2154-2158.2916
  • Gürsoy M (2022). Effect of salicylic acid pretreatment on seedling growth and antioxidant enzyme activities of sunflower (Helianthus annuus L.) and linseed (Linum usitatissimum L.) plants in salinity conditions. Romanian Agricultural Research, 39: 1-10.
  • Hamurcu M, Demiral T, Hakkı EE, Türkmen Ö, Gezgin S, Bell R.W (2015). Oxidative stress responses in watermelon (Citrullus lanatus) as influenced by boron toxicity and drought. Zemdirbyste-Agriculture, 102(2): 209216. https://doi.org/10.13080/z-a.2015.102.027
  • Hazneci E, Arslanaoğlu ŞF (2021). Orta karadeniz bölgesinde kırsal alanlar için keten bir şans mı? Kârlılık analizi ve yapılabilirliği. Tekirdağ Ziraat Fakültesi Dergisi, 18(3): 586-598 https://doi.org/10.33462/jotaf.938556
  • Kacar B, Katkat V (2006) Plant Nutrition. Nobel Publishing. Istanbul, Turkey.
  • Karabal E, Yucel M, Oktem AH (2003) Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Sci. 164: 925-933.
  • Mstat (1989). Mstat-C, A Microcomputer Program for the Design, Management and Analysis of Agronomic Research Experiments. Michigan State University, ABD.
  • Muhammad HRS, Tasveer ZB, Uzma Y (2013). Boron irrigation effect on germination and morphological attributes of Zea mays cultivars (Cv. Afghoee & Cv. Composite). International Journal of Engineering Science, 4(8): 1563-1569.
  • Orchard TJ (1977). Estimating the parameters of plant seedling emergence. Seed Science, 5(1): 61-69.
  • Siddiqi E, Ashraf M, Aisha AN (2007). Variation in seed germination and seedling growth in some diverse line of safflower (Carthamus tinctorius L.) under salt stress. Pakistan Journal of Botany, 39: 1937-1944.
  • Taban S, Erdal İ (2000). Bor uygulamasının değişik buğday çeşitlerinde gelişme ve toprak üstü aksamda bor dağılımı üzerine etkisi. Turkish Journal of Agriculture and Forestry, 24: 255-262.
  • Tassi E, Giorgetti L, Morelli E, Peralta Videa JR, Gardea-Torresdey JL, Barbafieri M (2017) Physiological and biochemical responses of sunflower (Helianthus annuus L.) exposed to nano-CeO2 and excess boron: Modulation of boron phytotoxicity. Plant Physiology and Biochemistry, 110: 50-58.
  • Turan MA, Taban N, Taban S (2009). Effect of calcium on the alleviation of boron toxicity and localization of boron and calcium in cell wall of wheat. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2): 99-103.
  • Prathima AS, Rohini NM, Shivaramu HS (2016). Influence of boron seed treatment on seed germination, seedling length and seedling vigor in sunflower (Helianthus annuus L.). International Journal of Science and Nature, 7(2): 273-276.
  • Ritchie SW, Nguyen HT, Haloday AS (1990) Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30: 105-111.
  • Seferoğlu S, Kaptan MA (2020). The Effects of irrigation waters with different boron contents on barley and wheat plants. Ege Üniversitesi Ziraat Fakültesi Dergisi, 57(1):137-144. https://doi.org/10.20289/zfdergi.526102
  • Yolci MS, Tunçtürk R, Tunçtürk M (2022). The effects of boron toxicity and bacteria (PGPR) applications on growth development and physiological properties in medicinal sage (Salvia officinalis L.). Journal of the Institute of Science Technology, 12(2): 1102-1113.
  • Welch RM, Shuman L (1995). Micronutrient nutrition of plants. Critical Reviews in Plant Sciences, 14(1): 49-82.
Selcuk Journal of Agriculture and Food Sciences-Cover
  • ISSN: 2458-8377
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002