Titreşimin Ortodontik Diş Hareketi Hızına Etkisi: Literatür Derlemesi

Ortodontik diş hareketi periodonsiyuma iletilen dış kuvvetlerin ve bu kuvvetlerin etkilediği alana nüfuz etmiş enflamatuvar mediyatörlerin alveol kemiğinde başlattığı yeniden şekillenme olayının bir sonucu olarak meydana gelmektedir. Günümüzde her yaşta ortodontik tedavi görmek isteyen hasta sayısının artmış olmasıyla birlikte kısa süre içerisinde sonuçlanan ortodontik tedavi talebinin de artması, ayrıca uzun süreli ortodontik tedavilerin beyaz nokta lezyonları, diş çürükleri, periodontal sorunlar ve kök rezorpsiyonu gibi yan etkilerinin bulunması nedeniyle diş hareketini hızlandırmaya yönelik yöntemler önem kazanmaktadır. Bu yöntemler; girişimsel olan cerrahi yöntemler, girişimsel olmayan farmakolojik uygulamalar ve mekanik-fiziksel uygulamalardır. Girişimsel olan cerrahi uygulamalar her ne kadar etkili ve öngörülebilir olsa da post-operatif ağrı, periodontal doku hasarına sebep olabilmeleri ve hasta kabul edilebilirliğinin düşük olması araştırmacıları girişimsel olmayan yöntemlerin etkilerinin araştırılmasına yöneltmiştir. Titreşim uygulamaları yakın zamanda ortodontide diş hareketinin hızlandırılması amacıyla kullanılmakta olan girişimsel olmayan uygulamalardan birisidir. Titreşim uygulamasının girişimsel bir yöntem olmaması, periodontal dokulara zarar vermemesi, ortodontik tedavi kaynaklı diş ağrılarını azaltabilmesi, hasta açısından kolay uygulanabilmesi ve rahatsızlık vermemesi gibi özellikleri ortodonti açısından önemini artırmıştır. Literatürdeki çalışmalara bakıldığında genel olarak titreşimin diş hareketi hızını artırdığına yönelik bulgular olduğu gibi diş hareketi üzerinde etkili olmadığını belirten çalışmalar da bulunmaktadır. Optimal bir vibrasyon protokülün belirlenebilmesi, vibrasyonun diş hareketi üzerindeki etkisinin moleküler ve hücresel mekanizmalarının aydınlatılabilmesi amacıyla gelecekte daha çok çalışmaya ihtiyaç duyulmaktadır.

Accelaration Effect of Vibration On Orthodontic Tooth Movement: Review of Literature

Orthodontic tooth movement occurs as a result of the external forces transmitted to the periodontium and inflammatory mediators penetrated to the area effected by these external forces which stimulates remodelling of alveolar bone. Because of the increasing number of patients who want to receive orthodontic treatment in every age and the incresing demand for orthodontic treatment in a short time, also side effects of long-term orthodontic treatment like white spot lesion formations, dental caries, periodontal problems and root resorption, certain methods to accelerate orthodontic tooth movement have gained importance. These methods are; invasive surgical methods, non-invasive pharmacological applications and mechanical-physical applications. Although the surgical applications are effective and predictable, post-operative pain, periodontal tissue damage and low patient admissibility have led the researchers to investigate the effects of non-invasive methods. Vibration applications are one of the non-invasive applications that have recently been used to accelerate orthodontic tooth movement. Vibration is a non-invasive method which doesnt harm periodontal tissues, which can reduce orthodontic pain and which is comfortable and easy to be applied to the patient so these features increased the importance of this method in orthodontics. In the literature, there are some studies indicating that vibration increases the speed of the tooth movement also there are some studies indicating that it is not effective on accelerating the tooth movement. More studies are needed in the future in order to determine an optimal vibration protocol and to elucidate the molecular and cellular mechanisms of the effect of vibration on orthodontic tooth movement.

___

  • 1. Long H, Pyakurel U, Wang Y, Liao L, Zhou Y, Lai W. Interventions for accelerating orthodontic tooth movement: a systematic review. Angle Orthod 2013;83:164-71.
  • 2. Kau CH, Kantarci A, Shaughnessy T, Vachiramon A, Santiwong P, de la Fuente A. Photobiomodulation accelerates orthodontic alignment in the early phase of treatment. Prog Orthod 2013; 14:30.
  • 3. Kurol J, Owman-Moll P, Lundgren D. Time-related root resorption after application of acontrolled continuous orthodontic force. Am J Orthod Dentofacial Orthop 1996;110(3):303-310.
  • 4. Segal GR, Schiffman PH, Tuncay OC. Meta analysis of the treatment-related factors of external apical root resorption. Orthod Craniofac Res 2004;7:71-8.
  • 5. Davidovitch Z, Nicolay OF, Ngan PW, Shanfeld JL. Neurotransmitters, cytokines, and the control of alveolar bone remodeling in orthodontics. Dent Clin North Am 1988; 32(3):411–35.
  • 6. Davidovitch Z. Tooth movement. Crit Rev Oral Biol Med 1991; 2(4):411–50.
  • 7. Darendeliler MA, Zea A, Shen G, Zoellner H. Effects of pulsed electromagnetic field vibration on tooth movement induced by magnetic and mechanical forces: a preliminary study Australian Dental Journal 2007;52:(4):282-28
  • 8. Chang HW, Huang HL, Yu JH, Hsu JT, Li YF, Wu YF. Effects of orthodontic tooth movement on alveolar bone density. Clin Oral Invest 2012;16:679–688.
  • 9. Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop 2006;129:469.e1-32.
  • 10. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003;423:337-42.
  • 11. 1Shiotani A, Shibasaki Y, Sasaki T. Localization of receptor activator of NF kappa B ligand, RANKL, in periodontal tissues during experimental movement of rat molars. J Electron Microsc (Tokyo) 2001;50:365-9.
  • 12. Meikle MC. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 2006; 28(3):221–40.
  • 13. Yamaguchi N, Chiba M, Mitani H. The induction of c-fos mRNA expression by mechanical stress in human periodontal ligament cells. Arch Oral Biol 2002;47:465-71.
  • 14. Matsuda N, Morita N, Matsuda K, Watanabe M. Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem Biophys Res Commun 1998;249:350-4.
  • 15. Kikuiri T, Hasegawa T, Yoshimura Y, Shirakawa T, Oguchi H. Cyclic tension force activates nitric oxide production in cultured human periodontal ligament cells. J Periodontol 2000;71:533.
  • 16. Engström C, Granström G, Thilander B. Effect of orthodontic force on periodontal tissue metabolism a histologic and biochemical study in normal and hypocalcemic young rats. Am J Orthod Dentofacial Orthop 1988;93(6):486-495.
  • 17. Hu L, Ujjwal P, Yan W, Lina L, Yang Z, Wenli L. Interventions for accelerating orthodontic tooth movement. A systematic review Angle Orthod 2013;83:164–171.
  • 18. Ren A, Lv T, Kang N, Zhao B, Chen Y, Bai D. Rapid orthodontic tooth movement aided by alveolar surgery in beagles. Am J Orthod Dentofac Orthop 2007;131(2):160.e1- 160.e10.
  • 19. Seifi M, Eslami B, Saffar AS. The effect of prostaglandin E2 and calcium gluconate on orthodontic tooth movement and root resorption in rats. Eur J Orthod 2003;25:199e204.
  • 20. Nimeri et al. Acceleration of tooth movement during orthodontic treatment - a frontier in Orthodontics. Progress in Orthodontics 2013; 14:42
  • 21. Shimizu Y. Movement of the lateral incisors in Macaca fuscata as loaded by a vibrating force. Nippon Kyosei Shika Gakkai Zasshi. 1986; 45(1):56–72.
  • 22. Zengo AN, Bassett CA, Pawluk RJ, Prountzos G. In vivo bioelectric petentials in the dentoalveolar complex. Am J Orthod 1974; 66(2):130–9.
  • 23. Gkantidis N, Mistakidis I, Kouskoura T, Pandis N. Effectiveness of non-conventional methods for accelerated orthodontic tooth movement: a systematic review and meta-analysis. J Dentistry. 2014;42:1300–1319.
  • 24. Mansfield, N. J. Human response to vibration. CRC Press 2004
  • 25. Wysocki A, Butler M, Shamliyan T, Kane RL Whole-body vibration therapy for osteoporosis: state of the science. Annuals of internal medicine 2011;155(10), 680-686.
  • 26. Gusi, N, Raimundo A, Leal A. Low- frequency vibratory exercise reduces the risk of bone fracture more than walking: a randomized controlled trial. BMC musculoskeletal disorders 2006.
  • 27. Bautmans I, Van Hees E, Lemper JC, Mets T. The feasibility of whole body vibration in institutionalised elderly persons and its influence on muscle performance, balance and mobility: a randomised controlled trial. BMC Geriatrics 2005, 5:17.
  • 28. Rauch, F. Vibration therapy. Developmental Medicine & Child Neurology 2009; 51: 166-168.
  • 29. Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 2004;19:343e51.
  • 30. Verschueren SM, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res 2004;19:352e9.
  • 31. Omar H, Shen G, Jones AS, Zoellner H, Petocz P, Darendeliler MA. Effect of low magnitude and high frequency mechanical stimuli on defects healing in cranial bones. Journal of Oral and Maxillofacial Surgery 2008;66(6):1104–11.
  • 32. Phusuntornsakul P, Jitpukdeebodintra S, Pavasant P, Leethanakul C. Vibration enhances PGE2, IL-6 and IL-8 expression in compressed hPDL cells via cyclo- oxygenase pathway. J Periodontol 2018;89:1131e41.
  • 33. Pavlin D, Gluhak-Heinrich J. Effect of mechanical loading on periodontal cells. Crit Rev Oral Biol Med 2001;12: 414–424.
  • 34. Leethanakul C, Suamphan S, Jitpukdeebodintra S, Thongudomporn U, Charoemratrote C. Vibratory stimulation increases interleukin-1 beta secretion during orthodontic tooth movement. Angle Orthod 2016;86:74e80
  • 35. Takano-Yamamoto T, Sasaki K, Fatemeh G, et al. Synergistic acceleration of experimental tooth movement by supplementary high-frequency vibration applied with a static force in rats. Sci Rep 2017;7:13969
  • 36. Pavlin D, Anthony R, Raj V, Gakunga PT. Cyclic loading (vibration) accelerates tooth movement in orthodontic patients: a double-blind, randomized controlled trial. Semin Orthod 2015;21:187e94.
  • 37. Alikhani M, Alansari S, Hamidaddin MA, et al. Vibration paradox in orthodontics: anabolic and catabolic effects. PLoS One 2018;13:e0196540.
  • 38. Kau CH, Nguyen JT, English JD. The clinical evaluation of a novel cyclical force generating device in orthodontics. Orthod Pract 2010;1:1e4.
  • 39. Nishimura M, Chiba M, Ohashi T, et al. Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Am J Orthod Dentofacial Orthop 2008;133:572e83.
  • 40. AlSayagh NM, Salman DKA. The effect of mechanical vibration on the velocity of orthodontic tooth movement. Int J Enhanced Res Sci Tech Eng 2014;3(1):284–91
  • 41. DiBiase AT, Woodhouse NR, Papageorgiou SN. Effects of supplemental vibrational force on space closure, treatment duration, and occlusal outcome: a multicenter randomized clinical trial. Am J Orthod Dentofacial Orthop 2018;153:469e480.e4.
  • 42. Kalajzic Z, Peluso EB, Utreja A, et al. Effect of cyclical forces on the periodontal ligament and alveolar bone remodeling during orthodontic tooth movement. Angle Orthod 2014;84:297e303
  • 43. Miles P, Smith H, Weyant R, Rinchuse DJ. The effects of a vibrational appliance on tooth movement and patient discomfort: a prospective randomised clinical trial. Aust Orthod J 2012;28:213e8.
  • 44. Yadav S, Dobie T, Assefnia A, Gupta H, Kalajzic Z, Nanda R. Effect of low-frequency mechanical vibration on orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2015;148(3):440–9.
  • 45. Krishtab S., Doroshenko S., Liutik G. Use of vibratory action on the teeth to accelerate orthodontic treatment. Stomatologia (Mosk) 1986;65:61-63.
  • 46. Kopher, R. A. and Mao, JJ. Suture Growth Modulated by the Oscillatory Component of Micromechanical Strain. J Bone Miner Res 2003; 18: 521-528.
  • 47. Mao JJ, Nah HD. Growth and development: hereditary and mechanical modulations. Am J Orthod Dentofacial Orthop 2004;125:676–689
  • 48. 48.Vij K, Mao JJ. Geometry and cell density of rat craniofacial sutures during early postnatal development and upon in vivo cyclic loading. Bone 2006;38:722-30.
  • 49. Rubin CT, Sommerfeldt DW, Judex S, Qin Y. Inhibition of osteopenia by low magnitude, high-frequency mechanical stimuli. Drug Discov Today 2001;6:848e58.
  • 50. Ottoson D, Ekblom A, Hansson P. Vibratory stimulation for the relief of pain of dental origin. Pain. 1981;10:37–45.
  • 51. Marie SS, Powers M, Sheridan JJ. Vibratory stimulation as a method of reducing pain after orthodontic appliance adjustment. J Clin Orthod 2003;37:205–208.
  • 52. 52. Wendy D. Lobre .Pain control in orthodontics using a micropulse vibration device: A randomized clinical trial. Angle Orthod 2016;86:625–630.
  • 53. Emata T. The mechanical response of the periodontal structure in the maxillary lateral incisor of the macaca fuscata yakui, loading by a vibrating force. J Oral Biol Sci 1979;21:571-585.
  • 54. Hadjiargyrou M, Mcleod K, Ryaby JP, Rubin C. Enhancement of fracture healing by low intensity ultrasound. Clin Orthop 1998;355S:216–229.
  • 55. Ohmae M, Saito S, Morohashi T, Qu H, Seki K, Kurabayashi H. Biomechanical acceleration of experimental tooth movement by ultrasonic vibration in vivo part 1. Homo-directional application of ultrasonication to orthodontic force. Orthod Waves 2001;60:201-12.
  • 56. Trenter SC, Walmsley AD. Ultrasonic dental scaler: associated hazards. J Clin Periodontol 2003;30:95-101.
  • 57. Goodship AE, Lawes TJ, Rubin, CT. Low‐magnitude high‐frequency mechanical signals accelerate and augment endochondral bone repair: Preliminary evidence of efficacy. J. Orthop. Res 2009 27: 922-930.
  • 58. Rubin C, Xu G, Judex S. The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. The FASEB Journal 2001 15:12, 2225-2229
  • 59. Rubin C, Turner AS, Muller R, Mittra E, McLeod K, Lin W. Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J Bone Miner Res 2002;17:349-57.
  • 60. Gilsanz V, Wren T, Sanchez M, Dorey F, Judex S, and Rubin C. Low-Level, High-Frequency Mechanical Signals Enhance Musculoskeletal Development of Young Women With Low BMD Journal Of Bone and Mineral Research Volume 21, Number 9, 2006
  • 61. Tanaka SM, Li J, Duncan RL, Yokota H, Burr DB, Turner CH. Effects of broad frequency vibration on cultured osteoblasts. Journal of Biomechanics 2003;36(1):73–80.
  • 62. Zhou Y, Guan X, Zhu Z, Gao S, Zhang C, Li C, et al. Osteogenic differentiation of bone marrow-derived mesenchymal stromal cells on bone-derived scaffolds: effect of microvibration and role of ERK1/2 activation. European Cells and Materials 2011;22:12–25.
  • 63. Luu YK, Capilla E, Rosen CJ, Gilsanz V, Pessin JE, Judex S. Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity. Journal of Bone and Mineral Research 2009;24(1):50–61.
  • 64. McCulloch CAG, Lekic P, McKee MD. Role of physical forces in regulating the form and function of the periodontal ligament. Periodontology 2000;24(1):56–72.
  • 65. Xie L, Jacobson JM, Choi ES, Busa B, Donahue LR, Miller LM. Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone 2006;39(5):1059–66.
  • 66. Chunxiang Zhang , Ji Li , Linkun Zhang , Yi Zhou , Weiwei Hou , Huixin Quan ,et al. Effects of mechanical vibration on proliferation and osteogenic differentiation of human periodontal ligament stem cells archives of oral biology 57 (2012) 1395–1407
  • 67. Tu X, Rhee Y, Condon KW, Bivi N, Allen MR, Dwyer D. Sost down regulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone 2012; 50:209-17.
  • 68. Lowe MK. Vibrating orthodontic remodeling device. US Patent 8,939,762 filed Aug 22, 2013, issued Jan 27, 2015
  • 69. Woodhouse NR, DiBiase AT, Johnson N, Slipper C, Grant J, Alsaleh M. Supplemental vibrational force during orthodontic alignment: a randomized trial. J Dent Res 2015;94(5):682–9.
  • 70. Miles P, Fisher E. Assessment of the changes in arch perimeter and irregularity in the mandibular arch during initial alignment with the AcceleDent Aura appliance vs no appliance in adolescents: a single-blind randomized clinical trial. Am J Orthod Dentofacial Orthop 2016;150:928e36.
  • 71. Katchooi M, Cohanim B, Tai S, Bayirli B, Spiekerman C, Huang G. Effect of supplemental vibration on orthodontic treatment with aligners: a randomized trial. Am J Orthod Dentofacial Orthop 2018;153:336e46.
  • 72. Liao Z, Elekdag-Turk S, Turk T. Grove J, Dalci O, Chen J, et al. Computational and clinical investigation on the role of mechanical vibration on orthodontic tooth movement. J Biomech 2017;60:57-64.
Selcuk Dental Journal-Cover
  • ISSN: 2148-7529
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2014
  • Yayıncı: Selcuk Universitesi Dişhekimliği Fakültesi
Sayıdaki Diğer Makaleler

DENTOALVEOLAR TRAVMA SONUCUNDA OLUŞAN ÖN DİŞ KRON KIRIKLARININ DİŞİN KIRIK PARÇASININ YENİDEN YAPIŞTIRILMASI TEKNİĞİ İLE TEDAVİSİ: DERLEME

Ülkü ŞERMET ELBAY, Mesut ELBAY, Gül UÇAR

Apikalden Taşmış Gutaperka Parçasının Çıkarılması İçin Negatif Apikal Basınç Tekniğinin Kullanımı – Bir Olgu Sunumu

Ertuğrul KARATAŞ, Ezgi DOĞANAY YILDIZ, Hakan ARSLAN

GEÇ ERGENLERDE VÜCUT KİTLE İNDEKSİ VE HALİTOZ ARASINDAKİ İLİŞKİ

Türkan Sezen ERHAMZA, Merve ERKMEN ALMAZ, FATİH TULUMBACI

Uyku ve Uyanıklık Bruksizmi Olan Bireylerde Uyku Kalitesinin Araştırılması

Neslihan TINASTEPE, İpek İŞCAN

PROTEZ TEMİZLEYİCİ SOLÜSYONLARIN HASSAS TUTUCULU HAREKETLİ PROTEZLERİN TUTUCU LASTİK KISIMLARININ SERTLİKLERİ ÜZERİNE ETKİLERİNİN ARAŞTIRILMASI

Doç Dr. Övül KÜMBÜLOĞLU, Elif KAYA, Makbule ŞAHAN

Papillon LeFèvre Sendromlu Hastalarda Alveoler Soket Koruma Yöntemi Olarak İmplant Yerleştirilmesi; İki Olgu Sunumu

Emine Elif MUTAFCILAR, Elif İNÖNÜ, RECEP DURSUN, SEMA HAKKI

Periodontal Hastalık ve Antioksidan Bitkiler

Didem BEZİRCİ, Meltem KARŞIYAKA HENDEK, Ebru OLGUN

Evaluation of The Association Between Mandibular Canal and Mandibular Third Molars On Cone Beam Computerized Tomography (CBCT)

GAYE KESER, EMRE ERGÜN, Filiz Namdar PEKİNER

Is there a relation between post-canine tooth loss and clinical manifestations of temporomandibular disorder?

Burak CEZAİRLİ, DAMLA TORUL, Kadircan KAHVECİ

Türk çocuklarında ortodontik lokal maloklüzyon risk faktörlerinin radyografik olarak değerlendirilmesi

Şirin HATİPOĞLU, EMİRE AYBÜKE ERDUR