Kök ucu açık dişlerde sonlu elemanlar analizi kullanılarak farklı yönlerden gelen travmaların oluşturduğu streslerin değerlendirilmesi

Amaç: Açık apeksli bir dişin farklı materyallerle yapılan endodontik tedavisi sonrasında oluşabilecek ikincil bir travmanın dişin hangi bölgesinde ve ne kadar yoğunlukta stres oluşturacağını sonlu elemanlar yöntemi kullanarak belirlemektir. Aynı zamanda meydana gelen stres yoğunluklarının kullanılan kök kanal dolum materyaline göre değişip değişmeyeceği ve hangi kök kanal dolum materyalinin dişi travmaya karşı daha dayanıklı hale getirebileceği konusunda fikir sahibi olmaktır. Gereç Ve Yöntemler: Çalışmamızda kök ucu açık santral dişin 3 boyutlu doku modeli oluşturularak 4 farklı diş grubu oluşturuldu. Grup 1; Sağlıklı diş modeli, grup 2; MTA ile kanal dolumu yapılmış diş modeli, grup 3; Biodentin ile kanal dolumu yapılmış diş modeli, grup 4; Güta-perka ile kanal dolumu yapılmış diş modeli olarak simüle edildi. Sonlu elemanlar analizi kullanılarak, gruplara 100 N, 500 N ve 800 N’luk kuvvetler horizontal, oblik ve vertikal yönlerde uygulandı. Uygulanan kuvvetler sonucunda diş dokularında meydana gelen von Mises stres ve deformasyon miktarları değerlendirildi. Bulgular: Vertikal kuvvetler karşısında en dayanıklı dişin, MTA uygulanmış diş olduğu bulundu. Dişte oluşan stres miktarları değerlendirildiğinde, MTA’nın kullanılan diğer materyallere gore dişi travmatik kuvvetlere karşı daha dayanıklı hale getirdiği görüldü. Horizontal ve oblik kuvvetlerde Biodentin’in dişi fraktür riskine karşı yeterince güçlendirmediği görülürken, vertikal kuvvetlerde iyi sonuçlar göstermiştir. Sonuç: Horizontal ve oblik kuvvetler uygulandığında ortaya çıkan sonuç, travmatik kuvvetler karşısında fraktüre en dayanıklı grubun sağlıklı diş grubu olduğudur.

Evaluation of stress caused by trauma from different directions by using finite element analysis in immature teeth

Background: In which region of the tooth and how intense the stress will occur in a secondary trauma that can occur after an endodontic treatment with an open apex tooth with different materials is determined using the finite element method. At the same time, it is to have an idea about the intensity of the stresses occur, depending on the root canal filling material used, and which root canal filling material can make the tooth more resistant to trauma. Methods: In our study, four different groups of teeth were formed by creating a three dimensional tissue model of the teeth with open apex. It was simulated as; group 1; Healthy tooth model, group 2; The canal-filled tooth model with MTA, group 3; The canal-filled tooth model with Biodentine, group 4; The canal-filled tooth model with Gutta-percha. Using finite element analysis, 100 N, 500 N and 800 N forces were applied to the groups in horizontal, oblique and vertical directions. As a result of the applied forces, von Mises stress and deformation amounts in the teeth tissues were evaluated. Results: Horizontal and oblique forces against the most resistant teeth healthy teeth, vertical forces against the most resistant teeth, MTA applied tooth was found. When the amount of stress on the teeth was evaluated, it was seen that the MTA made it more resistant to teeth against traumatic forces than the other materials used. However, since there is not enough work in the literature in this regard, more work is needed. Conclusion: The most resistant group against horizontal and oblique forces was found as the Group 1, healthy dental group.

___

  • 1. Alaçam A, 2012. Travma Nedeniyle Oluşan Diş Yaralanmaları ve Tedavileri. In: Endodonti. Eds: Alaçam T: Ankara, Mimtaş Yayıncılık, p. 985-1050.
  • 2. Andreasen JO, 1970. Etiology and pathogenesis of traumatic dental injuries. A clinical study of 1,298 cases. Scand J Dent Res, 78, 4, 329-42.
  • 3. Altay N, Gungor HC, 2001. A retrospective study of dento-alveolar injuries of children in Ankara, Turkey. Dent Traumatol, 17, 5, 201-4.
  • 4. Saroglu I, Sonmez H, 2002. The prevalence of traumatic injuries treated in the pedodontic clinic of Ankara University, Turkey, during 18 months. Dent Traumatol, 18, 6, 299-303.
  • 5. Lawley GR, Schindler WG, Walker WA, 3rd, Kolodrubetz D, 2004. Evaluation of ultrasonically placed MTA and fracture resistance with intracanal composite resin in a model of apexification. J Endod, 30, 3, 167-72.
  • 6. Talati A, Disfani R, Afshar A, Fallah Rastegar A, 2007. Finite element evaluation of stress distribution in mature and immature teeth. Iran Endod J, 2, 2, 47-53.
  • 7. Rafter M, 2005. Apexification: a review. Dent Traumatol, 21, 1, 1-8.
  • 8. Simon S, Rilliard F, Berdal A, Machtou P, 2007. The use of mineral trioxide aggregate in one-visit apexification treatment: a prospective study. Int Endod J, 40, 3, 186- 97.
  • 9. Andreasen JO, Farik B, Munksgaard EC, 2002. Longterm calcium hydroxide as a root canal dressing may increase risk of root fracture. Dent Traumatol, 18, 3, 134-7.
  • 10. Andreasen JO, Munksgaard EC, Bakland LK, 2006. Comparison of fracture resistance in root canals of immature sheep teeth after filling with calcium hydroxide or MTA. Dental traumatology: official publication of International Association for Dental Traumatology, 22, 3, 154-6.
  • 11.Bortoluzzi EA, Souza EM, Reis JM, Esberard RM, Tanomaru-Filho M, 2007. Fracture strength of bovine incisors after intra-radicular treatment with MTA in an experimental immature tooth model. IntEndod J, 40, 9, 684-91.
  • 12.Hatibovic-Kofman S, Raimundo L, Zheng L, Chong L, Friedman M, Andreasen JO, 2008. Fracture resistance and histological findings of immature teeth treated with mineral trioxide aggregate. Dent Traumatol, 24, 3, 272- 6.
  • 13.Cauwels RG, Pieters IY, Martens LC, Verbeeck RM, 2010. Fracture resistance and reinforcement of immature roots with guttapercha, mineral trioxide aggregate and calcium phosphate bone cement: a standardized in vitro model. Dent Traumatol, 26, 2, 137- 42.
  • 14.Craig RA, 1997. Restorative Dental Materials, St Louis: CV Mosby.
  • 15.da Silva BR, Moreira Neto JJ, da Silva FI, Jr., de Aguiar AS, 2013. Three-dimensional finite element analysis of the maxillary central incisor in two different situations of traumatic impact. Comput Methods Biomech Biomed Eng, 16, 2, 158-64.
  • 16.Poiate IA, de Vasconcellos AB, de Santana RB, Poiate E, 2009. Three-dimensional stress distribution in the human periodontal ligament in masticatory, parafunctional, and trauma loads: finite element analysis. J Periodontol, 80, 11, 1859-67.
  • 17.Toparli M, Sasaki S, 2003. Finite element analysis of the temperature and thermal stress in a postrestored tooth. J Oral Rehabil, 30, 921-6.
  • 18.Witherspoon DE, Small JC, Regan JD, Nunn M, 2008. Retrospective analysis of open apex teeth obturated with mineral trioxide aggregate. J Endod, 34, 10, 1171-6.
  • 19.Damle S, Loomba A, 2012. Apexification of Anterior Teeth: A Comparative Evaluation of Mineral Trioxide Aggregate and Calcium Hydroxide Paste. J Clin Pediatr Dent, 36, 3, 263- 8.
  • 20.Laurent P, Camps J, About I, 2012. Biodentine(TM) induces TGF-beta1 release from human pulp cells and early dental pulp mineralization. Int Endod J, 45, 5, 439-48.
  • 21.Camilleri J, 2013. Investigation of Biodentine as dentine replacement material. J Dent, 41, 7, 600- 10.
  • 22.Tagger M, Tamse A, Katz A, Korzen BH, 1984. Evaluation of the apical seal produced by a hybrid root canal filling method, combining lateral condensation and thermatic compaction. J Endod, 10, 7, 299-303.
  • 23.Tait CME, Ricketts DNJ, Higgins AJ, 2005. Weakened anterior roots – intraradicular rehabilitation. Br Dent J, 198, 10, 609-17.
  • 24.Srirekha A, Bashetty K, 2010. Infinite to finite: an overview of finite element analysis. Indian J Dent Res, 21, 3, 425-32.
  • 25.Huang HM, Ou KL, Wang WN, Chiu WT, Lin CT, Lee SY, 2005. Dynamic finite element analysis of the human maxillary incisor under impact loading in various directions. J Endod, 31, 10, 723-7.
  • 26.Huang HM, Tsai CY, Lee HF, Lin CT, Yao WC, Chiu WT, Lee SY, 2006. Damping effects on the response of maxillary incisor subjected to a traumatic impact force: a nonlinear finite element analysis. J Dent, 34, 4, 261-8.
  • 27.Olsen JL, 2013. Finite Element Analysis of Maxillary Central Incisor Trauma, The University of North Carolina at Chapel Hill.
  • 28.Stuart CH, Schwartz SA, Beeson TJ, 2006. Reinforcement of immature roots with a new resin filling material. J Endod, 32, 4, 350-3.
  • 29.Poolthong S, Mori T, Swain MV, 2001. Determination of elastic modulus of dentin by small spherical diamond indenters. Dental materials journal, 20, 3, 227-36.
  • 30.Majorana A, Pasini S, Bardellini E, Keller E, 2002. Clinical and epidemiological study of traumatic root fractures. Dental traumatology: official publication of International Association for Dental Traumatology, 18, 2, 77-80.
  • 31.Tanaka M, Naito T, Yokota M, Kohno M, 2003. Finite element analysis of the possible mechanism of cervical lesion formation by occlusal force. J Oral Rehabil, 30, 1, 60-7.
  • 32.AM EL-Ma, Qualtrough AJ, Watts DC, 2014. Resistance to vertical fracture of MTA-filled roots. Dent Traumatol, 30, 1, 36-42.
  • 33.Forghani M, Bidar M, Shahrami F, Bagheri M, Mohammadi M, AttaranMashhadi N, 2013. Effect of MTA and Portland Cement on Fracture Resistance of Dentin. Journal of dental research, dental clinics, dental prospects, 7, 2, 81-5.
  • 34.Aksel H, Askerbeyli-Ors S, Deniz-Sungur D, 2017. Vertical root fracture resistance of simulated immature permanent teeth filled with MTA using different vehicles. J Clin Exp Dent, 9, 2, e178-e81.
  • 35.Elnaghy AM, Elsaka SE, 2016. Fracture resistance of simulated immature teeth filled with Biodentine and white mineral trioxide aggregate - an in vitro study. Dent Traumatol, 32, 2, 116-20.
  • 36.Sornkul E, Stannard JG, 1992. Strength of roots before and after endodontic treatment and restoration. J Endod, 18, 9, 440-3.
  • 37.Di Fiore PM, Reyes A, Dorn SO, Cron SG, Ontiveros JC, 2016. Evaluation of a calcium silicate-based cement as a root reinforcement material for endodontically treated maxillary anterior teeth. J Prosthet Dent, 115, 1, 35-41.
  • 38.Bayram E, Bayram HM, 2016. Fracture resistance of immature teeth filled with mineral trioxide aggregate, bioaggregate, and biodentine. Eur J Dent, 10, 2, 220- 4.
  • 39.Evren OK, Altunsoy M, Tanriver M, Capar ID, Kalkan A, Gok T, 2016. Fracture resistance of simulated immature teeth after apexification with calcium silicate-based materials. Eur J Dent, 10, 2, 188-92.
  • 40.Nagas E, Cehreli ZC, Uyanik O, Vallittu PK, Lassila LV, 2016. Reinforcing Effect of Glass Fiberincorporated ProRoot MTA and Biodentine as Intraorifice Barriers. J Endod, 42, 11, 1673-6.
  • 41.Bin Ahmed YO, 2012. BiodentineTM as a Root Filling Material in Immature Permanent Teeth-a preliminary in Vitro study, King's Collage London.
  • 42.Topcuoglu HS, Kesim B, Duzgun S, Tuncay O, Demirbuga S, Topcuoglu G, 2015. The effect of various backfilling techniques on the fracture resistance of simulated immature teeth performed apical plug with Biodentine. Int J Paediatr Dent, 25, 4, 248-54.
  • 43.Zhabuawala MS, Nadig RR, Pai VS, Gowda Y, 2016. Comparison of fracture resistance of simulated immature teeth with an open apex using Biodentine and composite resin: An in vitro study. J Indian Soc Pedod Prev Dent, 34, 4, 377-82.
Selcuk Dental Journal-Cover
  • ISSN: 2148-7529
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2014
  • Yayıncı: Selcuk Universitesi Dişhekimliği Fakültesi
Sayıdaki Diğer Makaleler

Anterior diastemaların direkt kompozit rezin restorasyonlarla estetik rehabilitasyonu: 5 Olgu sunumu

Handan YILDIRIM, Esra ÖZYURT

FARKLI TİPTEKİ RESTORATİF CAM İYONOMER SİMANLARIN MİKROSIZINTI ÜZERİNE ISI UYGULANMASININ ETKİSİ

Çiğdem GÜLER, Fatih BAYAR

ANTERİOR DİASTEMALARIN DİREKT KOMPOZİT REZİN RESTORASYONLARLA ESTETİK REHABİLİTASYONU: 5 OLGU SUNUMU

Handan YILDIRIM, Esra ÖZYURT

BULK-FİLL KOMPOZİTLERDE KALINLIĞIN ARTIŞININ MİKROSERTLİK ÜZERİNE ETKİSİ

Evrim ELİGÜZELOĞLU DALKILIÇ, Fehime ALKAN, Hacer DENİZ ARISU

Revo-S ve Lightspeed-LSX Döner Sistem Eğelerinin Aşırı Eğimli Kök Kanallarındaki Etkinliğinin Araştırılması / Analysis of Preparation Performance of Revo-S vs. Lightspeed-LSX on the Cross Sections of Severe Curved Root Canals

Durmuş Alperen BOZKURT, Ayşe Diljin KEÇECİ

Ortognatik Cerrahinin Maksiller Sinüs Ventilasyon Hacmi Üzerine Etkisinin KIBT ile Değerlendirilmesi

Hazal DUYAN, Burcu EVLİCE

FLORİD İÇERİKLİ RESTORATİF MATERYALLERİN FLORİD SALIMI VE FLORİDLE YENİDEN YÜKLENEBİLME ÖZELLİKLERİNİN DEĞERLENDİRİLMESİ

Zehra KARACA, Aylin AKBAY OBA, Nurhan ÖZALP, Tuğçe ÖZMEN DERKUŞ, Mustafa TAŞTEKİN

Dental implantasyondan önce sert doku hazırlığı: dört yıllık retrospektif bir çalışma

Osman Fatih ARPAĞ, Ahmet ALTAN, İbrahim DAMLAR

Farklı Pulpa Kaplama Materyallerinin Toplam Oksidan ve Antioksidan Kapasitelerinin İnsan Dental Pulpa Kök Hücreleri Üzerinde Değerlendirilmesi

Seçkin AKSU, Taşkın GÜRBÜZ

Çocukların boyu ve süt dişlerinin kuron boyutları arasındaki ilişki

Hazal ÖZCAN, Buse YILMAZ, Sinem BİRANT, Ceren İLİSULU, Ceren AYDIN, MİNE KORUYUCU, Figen SEYMEN