Normal Cumulative Distribution Function and Dispersion Entropy Based EMG Classification

Electromyography (EMG) is used to measure muscle activity. EMG signals are widely used in many biomedicalpractices such as motion recognition, prosthetic control, physical rehabilitation, and human-computer interfaces.The effective use of EMG in such practices depends on distinctive feature extraction. In this study, DispersionEntropy (DisEn) and Normal Cumulative Distribution Function (NCDF) methods are used for feature extractionfrom EMG signals. The suggested method was tested with a data set containing immersion of six different objects.In the experimental studies, the proposed method distinguished the movements with an accuracy performance of98%. When compared to other methods using the same data set, the suggested method has about 1.2% betterperformance.

___

[1] J. J. A. Mendes Junior, M. L. B. Freitas, H. V. Siqueira, A. E. Lazzaretti, S. F. Pichorim, and S. L. Stevan, “Feature selection and dimensionality reduction: An extensive comparison in hand gesture classification by sEMG in eight channels armband approach,” Biomed. Signal Process. Control, vol. 59, 2020, doi: 10.1016/j.bspc.2020.101920.

[2] Babita, P. Kumari, Y. Narayan, and L. Mathew, “Binary movement classification of sEMG signal using linear SVM and Wavelet Packet Transform,” 1st IEEE Int. Conf. Power Electron. Intell. Control Energy Syst. ICPEICES 2016, pp. 30–33, 2017, doi: 10.1109/ICPEICES.2016.7853640.

[3] C. Sravani, V. Bajaj, S. Taran, and A. Sengur, “Flexible Analytic Wavelet Transform Based Features for Physical Action Identification Using sEMG Signals,” IRBM, 2020, doi: 10.1016/j.irbm.2019.07.002.

[4] A. Arı, F. AYAZ, and D. HANBAY, “EMG Sinyallerinin Kısa Zamanlı Fourier Dönüşüm Özellikleri Kullanılarak Yapay Sinir Ağları ile Sınıflandırılması,” Fırat Üniversitesi Mühendislik Bilim. Derg., pp. 443–451, Sep. 2019, doi: 10.35234/fumbd.545161.

[5] C. Sapsanis, G. Georgoulas, A. Tzes, and D. Lymberopoulos, “Improving EMG based classification of basic hand movements using EMD,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 5754–5757, 2013, doi: 10.1109/EMBC.2013.6610858.

[6] J. Qi, G. Jiang, G. Li, Y. Sun, and B. Tao, “Intelligent Human-Computer Interaction Based on Surface EMG Gesture Recognition,” IEEE Access, vol. 7, pp. 61378–61387, 2019, doi: 10.1109/ACCESS.2019.2914728.

[7] N. A. Chaya, B. R. Bhavana, S. B. Anoogna, M. Hiranmai, and N. B. Krupa, “Real-Time Replication of Arm Movements Using Surface EMG Signals,” Procedia Comput. Sci., vol. 154, pp. 186–193, 2018, doi: 10.1016/j.procs.2019.06.028.

[8] A. Arı, B. Arı, and Ö. F. Alçin, “Elektromiyografi Sinyallerinin Permütasyon Entropi ve Bir Boyutlu Yerel İkili Özellikler Kullanılarak Sınıflandırılması,” J. Tepecik Educ. Res. Hosp., vol. 30, no. 1, pp. 46–49, 2020, [Online]. Available: https://www.journalagent.com/terh/pdfs/TERH_30_1_1_82.pdf.

[9] T. Tuncer, S. Dogan, and A. Subasi, “Surface EMG signal classification using ternary pattern and discrete wavelet transform based feature extraction for hand movement recognition,” Biomed. Signal Process. Control, vol. 58, p. 101872, 2020, doi: 10.1016/j.bspc.2020.101872.

[10] A. C. Turlapaty and B. Gokaraju, “Feature Analysis for Classification of Physical Actions Using Surface EMG Data,” IEEE Sens. J., vol. 19, no. 24, pp. 12196–12204, 2019, doi: 10.1109/JSEN.2019.2937979.

[11] Ö. F. Alçin, “Fraktal Eğimden Arındırılmış Dalgalılık Analizi ve Pencereli Kare Ortalamanın Karekökü Tabanlı EMG Sınıflandırma,” Fırat Üniversitesi Mühendislik Bilim. Derg., vol. 32, no. 2, pp. 359–368, 2020, doi: 10.35234/fumbd.771205.

[12] M. Rostaghi and H. Azami, “Dispersion Entropy: A Measure for Time-Series Analysis,” IEEE Signal Process. Lett., vol. 23, no. 5, pp. 610–614, 2016, doi: 10.1109/LSP.2016.2542881.

[13] H. Azami et al., “Multiscale fluctuation-based dispersion entropy and its applications to neurological diseases,” IEEE Access, vol. 7, pp. 68718–68733, 2019, doi: 10.1109/ACCESS.2019.2918560.

[14] M. Zanin, L. Zunino, O. A. Rosso, and D. Papo, “Permutation entropy and its main biomedical and econophysics applications: A review,” Entropy, vol. 14, no. 8, pp. 1553–1577, 2012, doi: 10.3390/e14081553.

[15] H. Azami, L. E. V. da Silva, A. C. M. Omoto, and A. Humeau-Heurtier, “Two-dimensional dispersion entropy: An information-theoretic method for irregularity analysis of images,” Signal Process. Image Commun., vol. 75, no. April, pp. 178–187, 2019, doi: 10.1016/j.image.2019.04.013.

[16] E. Kafantaris, I. Piper, T. Y. M. Lo, and J. Escudero, “Augmentation of dispersion entropy for handling missing and outlier samples in physiological signal monitoring,” Entropy, vol. 22, no. 3, 2020, doi: 10.3390/e22030319.

[17] M. Aslan, Y. Akbulut, A. Şengür, and M. C. Ince, “Skeleton based efficient fall detection,” J. Fac. Eng. Archit. Gazi Univ., 2017, doi: 10.17341/gazimmfd.369347.

[18] F. Demir, M. Turkoglu, M. Aslan, and A. Sengur, “A new pyramidal concatenated CNN approach for environmental sound classification,” Appl. Acoust., 2020, doi: 10.1016/j.apacoust.2020.107520.

[19] S. Yu, X. Li, X. Zhang, and H. Wang, “The OCS-SVM: An Objective-Cost-Sensitive SVM With Sample-Based Misclassification Cost Invariance,” IEEE Access, vol. 7, pp. 118931– 118942, 2019, doi: 10.1109/access.2019.2933437.

[20] X. Wu, W. Zuo, L. Lin, W. Jia, and D. Zhang, “F-SVM: Combination of Feature Transformation and SVM Learning via Convex Relaxation,” IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 11, pp. 5185–5199, 2018, doi: 10.1109/TNNLS.2018.2791507.

[21] O. F. Alcin, A. Sengur, J. Qian, and M. C. Ince, “OMP-ELM: Orthogonal matching pursuitbased extreme learning machine for regression,” J. Intell. Syst., 2015, doi: 10.1515/jisys-2014- 0095.

[22] G. Bin Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: Theory and applications,” Neurocomputing, 2006, doi: 10.1016/j.neucom.2005.12.126.