Using conserved cycles in exact stochastic simulation algorithms

Biyokimyasal reaksiyon sistemleri farklı reaksiyonlar aracılığıyla etkileşime giren birçok farklı türü içerir. Sistem içerisinde yer alan türlerin sayıları ve miktarları çok yüksek olduğunda, diferansiyel denklemlere dayanan saf modelleme yaklaşımları çok boyutluluktan muzdarip olurlar. Eğer bir sistem korunumlu döngüler içerirse, bazı türlerin miktarları cebirsel bağlantılar yoluyla elde edilebilir bu da sistemin dinamiklerini temsil eden diferansiyel denklemlerin boyutunu düşürür. Bu çalışmada, biyokimyasal reaksiyon sistemlerinde yer alan korunumlu döngüleri elde etmek için Gauss-Jordan metodunu kullanan bir nümerik algoritma öneriyoruz. Algoritmayı stokastik modelleme yaklaşımında konum vektörünün tam realizasyonlarını elde eden Direk Metod (DM), İlk Reaksiyon Metodu (FRM) ve Sonraki Reaksiyon Metodu (FRM) içerisinde verdik. Bu üç algoritmayı korunum bağıntılarını içerecek/içermecek şekilde farklı boyutlardaki biyokimyasal sistemlere uyguladık ve her tam lagoritmanın farklı iki versiyonunun hesaplama miktarları kıyasladık.

Korunumlu döngülerin stokastik simülasyon algoritmalarında kullanımı

Biochemical reaction systems involve many different species interacting via many different reaction channels. When the number of species and the abundance of species are so high, pure modeling approaches based on differential equations suffer from curse of dimensionality. If a system involves conserved cycles, abundances of some species can be obtained via algebraic relations which in turn will reduce the dimension of differential equations representing the dynamics of the system. In the present paper, we propose a numerical algorithm that uses Gauss-Jordan method to obtain conserved cycles in biochemical systems. We give this algorithm in Direct Method (DM), First Reaction Method (FRM) and Next Reaction Method (NRM) which obtain exact realizations of the state vector in stochastic modeling approach. We apply these three algorithms with/without using conservation relations to biochemical systems in different sizes and compare the computational costs of two different versions of each exact algorithm.

___

  • A. Kremling, J. Saez-Rodriguez, Systems biologyan engineering perspective, Journal of Biotechnology 129 (2007) 329-351.
  • D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem 81 (1977) 2340-2361.
  • N. G. v. Kampen, Stochastic processes in physics and chemistry, Amsterdam; New York : North- Holland ; New York : sole distributors for the USA and Canada, Elsevier North-Holland, 1981.
  • D. Wilkinson, Stochastic modelling for systems biology, Chapman & Hall/CRC mathematical and computational biology series, Boca Raton, FL : Taylor & Francis, 2006.
  • D. Anderson, T. Kurtz, Continuous time markov chain models for chemical reaction networks, in: H. Koeppl, G. Setti, M. d. Bernardo, D. Densmore (Eds.), Design and Analysis of Biomolecular Circuits, Springer-Verlag, 2011.
  • D. T. Gillespie, A rigorous derivation of the chemical master equation, Physica A 188 (1992) 404-425.
  • F. Cordero, A. Horv´ath, D. Manini, L. Napione, M. De Pierro, S. Pavan, A. Picco, A. Veglio, M. Sereno, F. Bussolino, G. Balbo, Simplification of a complex signal transduction model using invariants Theoretical Computer Science 412 (2011), 6036- 6057.
  • T. R. Maarleveld, R. A. Khandelwal, B. G. Olivier, B. Teusink, F. J. Bruggeman, Basic concepts and principles of stoichiometric modeling of metabolic networks, Biotechnol. J. 8 (2013) 997-1008.
  • D. W. Schryer, M. Vendelin, P. Peterson, Symbolic flux analysis for genome-scale metabolic networks, BMC Systems Biology 5 (81). equivalent servers, [8] [9]
  • R. Winkler, Stochastic differential algebraic equations in transient noise analysis, in: Scientific Computing in Electrical Engineering, Mathematics in Industry, Springer, 2004, pp.151-158
  • H. Sauro, B. Ingalls, Conservation analysis in biochemical networks computational issues for software writers, Biophysical Chemistry 109 (2004) 1-15.
  • E. Klipp, W. Liebermeister, C. Wierling, A. Kowald, H. Lehrach, R. Herwig, Systems Biology: A Textbook, WILEY - VCH Verlag GmbH & Co. KGaA, 2009.
  • R. R. Vallabhajosyula, V. Chickarmane, H. M. Sauro, Conservation analysis of large biochemical networks, Bioinformatics 22 (3) (2006) 346-353. [14] H. S. Haraldsdottir, R. M. T. Fleming, Identification of conserved moieties in metabolic networks by graph theoretical analysis of atom transition networks, arXiv (2016). arXiv:arXiv:1605.05371. [15] S. Schuster, T. Hofer, Determining all extreme semi-positive conservation relations in chemical reaction systems: A test criterion for conservativity, J. Chem. Soc. Faraday Trans. 87 (16) (1991) 2561-2566.
  • A. Cornish-Bowden, J.-H. Hofmeyr, The role of stoichiometric analysis in studies of metabolism: An example, Journal of Theoretical Biology 216 (2002) 179-191.
  • R. Winkler, Stochastic differential algebraic equations of index 1 and applications in circuit simulation, Journal of Computational and Applied Mathematics 157 (2003) 477-505.
  • A. Ganguly, D. Altıntan, H. Koeppl, Jumpdiffusion approximation of stochastic reaction dynamics: Error bounds and algorithms, Multiscale Model. Simul. 13 (4) (2015) 1390- 1419.
  • D. Gillespie, The chemical langevin equation, Journal of Chemical Physics 113 (1) (2000) 297- 306.
  • T. Jahnke, W. Huisinga, Solving the chemical master equation for monomolecular reaction systems analytically, J. Math. Biol. 54 (2007) 1- 26.
  • D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys. 22 (1976) 403-434.
  • M. Gibson, J. Bruck, Efficient exact stochastic simulation of chemical systems with many species and many channels, The Journal of Physical Chemistry A 104 (9) (2000) 1876-1889.
  • Y. Cao, H. Li, L. Petzold, Efficient formulation of the stochastic simulation algorithm for chemically reacting systems, J. Chem. Phys 121 (9) (2004) 4059-4067.