Numerical and experimental approach of various sectioned new concept of the crash-boxes to determine the reliability and crashworthiness of the vehicles during frontal impacts

Overview on vehicle collisions shows us a perspective to evaluate the impact behavior of the vehicles and occupant safety. To decrease the deformations of the vehicle body and occupant injuries, many products have been developed already. The mentioned safety measures can be defined via active and passive security systems. This study is about, passive safety systems used naming “the crash-box” for vehicles during accidents, are investigated experimentally to reduce the shock effects of the frontal impacts. For crash-boxes square, circular or other standard closed sections are preferred regularly due to ease of the production. For this research, open section crash-boxes are studied. Up to the manufacturing restrictions one of the designs in four, is preferred. The new concept of crash-box is, assembling the specimens in front of the chassis and just behind front bumper, instead of using it like regular crash-boxes. Cross-section type of w shape, steel, sheet-metal crash-boxes are manufactured as a shock absorber unit. Height of 2.88m drop test setup was used for the experiments. Considering the limitations of the test setup, one eighth of a real accident scenario for a 1200kg vehicle can be processed with this experimental system. The impact tests are handled with 150kg drop weight and one crash-box unit as an accepted collision scale. To understand the most appropriate thickness for the absorbers is decided between 2mm, 1.5mm, 1mm and 0.8mm thick samples. Finally, 1mm thick St37 w shape crosssectional sheet metal crash-box is strong enough to absorb the impact energy of the frontal collisions.

___

S. Boria, J. Obradovic, and G. Belingardi, “Experimental and numerical investigations of the impact behaviour of composite frontal crash structures,” Composites Part B: Engineering, vol. 79, pp. 20–27, 2015.

K. Solabannawar, S.I. Bekinal, “To simulate and study the behaviour of vehicle front structure through tox joints in frontal collision,” International Research Journal of Engineering and Technology (IRJET)”, vol. 03, no. 7, pp. 1702-1707, 2016.

A. Ghadianlou, S.B. Abdullah, and A. Agarwal, “Crashworthiness design of vehicle side door beams under low-speed pole side impacts,” Thin-Walled Structures, vol. 67, pp. 25-33, 2013.

N. Tanlak, “Cross-sectional shape optimization of thin-walled columns enduring oblique impact loads,” Thin- Walled Structures, vol. 107, pp. 65-72, 2016.

N.N. Hussain, S.P. Regalla and Y.V.D. Rao, “Low velocity Impact Characterization of Glass Fibre Reinforced Plastics for Application of Crash Box,” Materialstoday: Proceedings, vol. 4 (2 PartA), pp. 3252-3262 2011.

J.A.C. Ambrósio, “Contact and impact models for vehicle crashworthiness simulation,” International Journal of Crashworthiness 8, vol. 8, no. 1, pp. 73-86, 2003.

Y. Nakazawa, K. Tamura, M. Yoshida, K. Takagi and M. Kano, “Development of Crash-box for passenger car with high capability for energy absorption,” CIMNE 2005 VIII International Conference on Computational Plasticity, 2005.

G. Belingardi, A.T. Beyene, E.G. Koricho and B. Martorana, “Alternative lightweight materials and component manufacturing technologies for vehicle frontal bumper beam,” Composite Structures, vol. 112, pp. 1-10, 2014.

C. Zhou, Y. Zhou and B. Wang, “Crashworthiness design for trapezoid origami crash boxes,” Thin-Walled Structures, vol. 117, pp. 257-267, 2017.

G. Belingardi, A.T. Beyene, E.G. Koricho and B. Martorana, “Crashworthiness of integrated crash-box and bumper beam made by die- forming composite,” 16th European Conf. on Composite Materials, 2014.

H. Chul, K. Dong, K. Shin, J.J. Lee and J.B. Kwon, “Crashworthiness of aluminum/CFRP square hollow section beam under axial impact loading for crash box application,” Composite Structures, vol. 112, pp. 1-10 2014.

G. Suna, T. Panga, C. Xua, G. Zhenga and J. Songc, “Energy absorption mechanics for variable thickness thin-walled structures,” Thin-Walled Structures, vol. 118, no. 1, pp. 214-218, 2017.

F. Tarlochan, F. Samer, A.M.S. Hamouda, S. Ramesh and K. Khalid, “Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces, Thin-Walled Structures, vol. 71, pp. 7-17, 2013.

A.A.A. Alghamdi, “Collapsible impact energy absorbers: An overview,” Thin- Walled Structures, vol. 39, pp. 189-213, 2001.

T. Wierzbicki, W. Abramowicz, “Collapsible impact energy absorbers: An overview,” Thin-Walled Structures, vol. 50, pp. 727-734, 1983.

S.A. Meguid, Y.P, “. Hou, Crush behaviour of foam-filled thin-walled conical frusta: analytical, numerical and experimental studies,” Acta Mechanical, vol. 227, pp. 3391–3406, 2016.

Y. Zhou, F. Lan and J. Chen, “Crashworthiness research on S-shaped front rails made of steel–aluminium hybrid materials,” Thin-Walled Structures, vol. 49, pp. 291-297 2011.

N. Tanlak, F.O. Sonmez and M. Senaltun, “Shape optimization of bumper beams under high-velocity impact loads,” Engineering Structures, vol. 95, pp. 49-60, 2015.

H. Ozera, Y. Canb and M. Yazıcıa, “Investigation of the Crash Boxes Light Weighting with Syntactic Foams by the Finite Element Analysis,” Acta Phys. Pol. A, vol. 132, pp. 734-737, 2017.

U. Ozsaraca, S. Isika, F. Varolb, “M.E. Unata, C. Ozdemira and S. Aslanlara, Investigation of Tensile Properties of Aluminium 6082-T6 Alloys Joined by Cold Metal Transfer Method by Using Different Working Time,” Acta Phys. Pol. A, vol. 132, pp. 705-707, 2017.

M. Urbanek and D. Blaszkiewicz, “FEM Based Improvement of CAD for Non- Conventional Railway Track,” Acta Phys. Pol. A, vol. 128, pp. 241-242, 2015.

I. K. Yilmazcoban, Omer Adanur, “Experimental Crash-Box Optimizations for The Frontal Impact Scenario of a Vehicle to Decrease The Shock Effects of Collisions,” ICCESEN 2017 4th International Conference on Computational and Experimental Science and Engineering, pp. 387, 2017.
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-4048
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1997
  • Yayıncı: Sakarya Üniversitesi Fen Bilimleri Enstitüsü