Lignoselülozik materyallerden biyoetanol üretimi için kullanılan ön-muamele ve hidroliz yöntemleri

Science and technology has rapidly expended and used for human benefits over the last 20 years. Humanity can solve some problems with the help of developing technology. But, they faced with fundemantal problem such as environmental distortion from increasing population and consumption of energy, raw material acarcity, nutrient deficiency, and waste management. Therefore, the main theme in our research covers the pre-treatment and hydrolysis methods use during production bioethanol from agricultural, forestry and municipal wastes.

Pre-treatment and hydrolysis methods for bioethanol production from lignocellulosic material

Science and technology has rapidly expended and used for human benefits over the last 20 years. Humanity can solve some problems with the help of developing technology. But, they faced with fundemantal problem such as environmental distortion from increasing population and consumption of energy, raw material acarcity, nutrient deficiency, and waste management. Therefore, the main theme in our research covers the pre-treatment and hydrolysis methods use during production bioethanol from agricultural, forestry and municipal wastes.

___

  • (REFERENCES) Foust, T.D., Aden, A., Dutta, A., Phillips, S., An Economic and Environmental Comparison of A Biochemical and A Thermochemical Lignocellulosic Ethanol Conversion Processes, Cellulose, 16, 547-565, 2009.
  • Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple M., Ladisch M., Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass, Bioresource Technol., 96, 673-686, 2005.
  • Alvira, P., Pejó E.T., Ballesteros, M., Negro, M.J., Pretreatment Technologies for An Efficient Bioethanol Production Process Based on Enzymatic Hydrolysis: A Review, Bioresource Technol., 101, 4851-4861, 2010.
  • Üçgül. İ., Akgül. G., Biomass Technology, Journal of Yekarum, 1(1), 3-11, 2010. http://www.ucl.ac.uk/chemeng/people/academicresearchers/ramirez
  • Galbe, M. Zacchi, G., Pretreatment: The Key to Efficient Utilization of Lignocellulosic Materials, Biomass Bioenerg., 46, 70-78, 2012.
  • Conde-Mejía, C., Jiménez-Gutiérrez, A., ElHalwagi, M., A Comparison of Pretreatment Methods for Bioethanol Production from Lignocellulosic Materials, Process. Saf. Environ., 90, 189-202, 2012.
  • Menon, V. and Rao, M., Trends in Bioconversion of Lignocellulose: Biofuels, Platform Chemicals & Biorefinery Concept, Prog. Energ. Combust., 38, 522-550, 2012.
  • Harun, R., Jason, W.S.Y., Cherrington, T., Danquah, M.K., Microalgal Biomass AS A Cellulosic Fermentation Feedstock for Bioethanol Production, Renew. Sust. Energ. Rev., 2010.
  • Sultan. D., Kelleher. B., Ross. J.R.H., Review of Literatüre on Catalysts for Biomass Gasification, Fuel. Process. Technol., 73, 155-173, 2001.
  • Kilzer, F.J., Broido, A., Speculations on The Nature of Cellulose Pyrolysis, Pyrodynamics, 2, 151-163, 1965.
  • Fan, L.T., Gharpuray, M.M., Lee, Y.-H., Cellulose Hydrolysis Biotechnology Monographs. Springer, 110(11), 211-230, 1987.
  • Shafizadeh, F., Lai, Y.Z.,. Thermal Degradation of 2-Deoxy-Darabino-Hexonic Acid and 3Deoxy-D-Ribo-Hexono-1,4-Lactone, Carbohyd. Res., 42, 39-53, 1975.
  • Mvula. E., Naumov. S., Sonntag. C.V., Ozonolysis of Lignin Models in Aqueous Solution: Anisole, 1,2-Dimethoxybenzene and 1,3,5-Trimethoxybenzene”, Environ. Sci. Technol. 43, 6275-6282, 2009.
  • Garcia-Cubero M. T., Gonzalez-Benito G., Indacoechea I., Coca M., Bolado S., Effect of Ozonolysis Pretreatment on Digestibility of Wheat and Rye Straw, Bioresource Technol., 100, 1608-1613 2009.
  • Kaneko H., Hosoya S., lyama K., Nakano J., Degredation of Lignin with Ozone, J. Wood. Chem. Technol., 3(4), 1983.
  • Wu L., Arakane M., Ike M., Wada M. Takai T., Gau M., Tokuyasu K., Low Temperature Alkali Pretreatment for İmproving Enzymatic Digestibility of Sweet Sorghum Bagasse for Ethanol Production”, Bioresource Technol., 102, 4793-4799, 2011.
  • Eggeman, T., Elander. R.T., Process and Economic Analysis of Pretreatment, Technologies Bioresource Technol., 96, 20192025, 2005.
  • Kang, K. O., Han, M., Moon, S. K., Kanh, H. W., Kim, Y., Cha, Y. L. and Choi, G. W., Optimization of alkali-extrusion pretreatment with twin-screw for bioethanol production from Miscanthus, Fuel, 109, 520-526, 2013.
  • Binod, P., Satyanagalakshmi, K., Sindhu, R., Janu, K. U., Sukumaran, R. K. and Pandey, A., Hort Duration Microwave Assisted Pretreatment Enhances The Enzymatic Saccharification and Fermentable Sugar Yield from Sugarcane Bagasse, Renew. Energ., 37, 109-116,2012.
  • Cao, W., Sun, C., Liu, R., Yin, R. and Wu, X., Comparison of The Effects of Five Pretreatment Methods on Enhancing The Enzymatic Digestibility and Ethanol Production from Sweet Sorghum Bagasse, Bioresource Technol., 111, 215-221, 2012. Karimi, K., Taherzadeh, M.S., Alkali Pretreatment of Softwood Spruce and Hardwood Birch by NaOH/Thiourea, NaOH/Urea, NaOH/Urea/Thiourea, and NaOH/PEG to İmprove Ethanol and Biogas Production, J. Chem. Technol. Biotechnol., 87, 1209-1214, 2012.
  • Rabelo S.C., Filho R.M., Costa A.C., Lime Pretreatment of Sugarcane Bagasse for Bioethanol Production, Appl. Biochem. Biotechnol., 153, 139–150, 2009.
  • Mielenz J.R., “Biofuels: Methods And Protocols”, Springer New York Dordrecht Heidelberg London, ISBN: 978-1-60761-214-8.
  • Thompson, D.N., Campbell, V., Bals, B., Runge, T., Teymouri, F. and Ovard, L.P., Chemical Preconversion: Application Of Low-Severity Pretreatment Chemistries For Commoditization Of Lignocellulosic Feedstock, Biofuels, 4(3), 323-340, 2013.
  • Zhang, C., Pang, f., Li, b., Xue, s. and Kang, y., Recycled Aqueous Ammonia Expansion (RAAE) Pretreatment to İmprove Enzymatic Digestibility of Corn Stalks, Bioresource Technol., 138, 314320, 2013.
  • Kang, K. E., Jeong, G.T., Sunwoo, C. and Park, D. H., Pretreatment of Rapeseed Straw by Soaking İn Aqueous Ammonia, Bioprocess Biosyst. Eng., 35, 77-84, 2012.
  • Talebnia, F., Karakashev, D. and Angelidaki, I., Production of Bioethanol from Wheat Straw: An Overview on Pretreatment, Hydrolysis and Fermentation, Bioresource Technol., 101, 47444753, 2010.
  • Liu, Z. S., Wu, X. L., Kida, K. and Tang, Y. Q., Corn stover saccharification with Concentrated Sulfuric Acid: Effects of Saccharification Conditions on Sugar Recovery and By-Product Generation, Biosource Technol., 119,224233,2012.
  • Wyman, C. E. Ethanol from Lignocellulosıc Biomass: Technology, Economics, and Opportunities, Bioresource Technol., 50, 3-16, 19 Jönsson, L.J., Alriksson, B. and Nilvebrant, N. O., Bioconversion of Lignocellulose: İnhibitors and Detoxification, Biotechnol. Biofuels., 6:16, 2-10, 20 Ferreira, S., Gil, N, Queiroz, J. A., Duarte, A. P. and Domingues, F. C. Bioethanol from the Portuguese Forest Residue Pterospartum tridentatum –An Evaluation of Pretreatment Strategy for Enzymatic Saccharification and Sugars Fermentation, Bioresource Technol., 101, 7797-7803, 2010. http://walkerlab.bee.cornell.edu/Pretreatment.ht ml
  • Njoku, S.I., Ahring, B.K. and Uellendahl, H., Pretreatment As The Crucial Step For A Cellulosic Ethanol Biorefinery: Testing The Efficiency Of Wet Explosion On Different Types Of Biomass, Bioresource Technol., 124, 105–110, 20 Sindhu, R., Kuttiraja, M., Binod, P., Janu, K.U., Sukumaran, R.K. and Pandey, A., Dilute Acid Pretreatment and Enzymatic Saccharification of Sugarcane Tops For Bioethanol Production, Bioresource Technol., 102, 10915-10921, 2011.
  • Zheng, Y., Lee,C., Yu,C., Cheng, Y.S., Zhang, R., Jenkins, B.M. and VanderGheynst, J.S., Dilute Acid Pretreatment And Fermentation Of Sugar Beet Pulp To Ethanol, Appl. Energ., 105, 1–7, 20 Ruiz, E., Romero, I., Moya, M., Cara, C., Vidal, J.D. and Castro, E., Dilute Sulfuric Acid Pretreatment of Sunflower Stalks for Sugar Production, Bioresource Technol., 140, 292-298, 20 He, M. X., Li, Q., Liu, X., Hu, Q., Hu, G., Pan, K., Zhu, Q., and Wu, J., Bio-ethanol Production from Bamboo Residues with Lignocellulose Fractionation Technology (LFT) and Separate Hydrolysis Fermentation (SHF) by Zymomonas Mobilis, Am. J. Biomass Bioenergy, 1, 1-10,2013.
  • Hsu, W-H., Lee, Y-Y., Peng, W-H. and Wu, K.CW. Cellulosic Conversion in İonic Liquids (Ils): Effects Of H 2 O/Cellulose Molar Ratios, Temperatures, Times, and Different Ils on The Production of Monosaccharides and 5Hydroxymethylfurfural (HMF), Catal. Today, 174, 65-69, 2011.
  • Kurtuluş M., Lignoselülozik Materyallerden Termokatalitik İşlemle Suda Çözündürülen Polisakkaritlerin Moleküler Yapılarının İncelenmesi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2010.
  • Mtui, G. Y. S., Recent Advances in Pretreatment of Lignocellulosic Wastes and Production of Value Added Products, Afr. J. Biotechnol., 8(8), 1398-1415, 2009.
  • Kristensen, J. B., Thygesen, L. G., Felby, C., Jİrgensen, H., and Elder, T., Cell-Wall Structural Changes in Wheat Straw Pretreated for Bioethanol Production, Biotechnol. Biofuels., 1(5), 1-9, 2008.
  • Chandra, R., Takeuchi, H. and Hasegawa, T., Hydrothermal Pretreatment of Rice Straw Biomass: A Potential and Promising Method for Enhanced Methane Production, Appl. Energ., 94, Nitsos, C.K., Matis, K.A. and Triantafyllidis, K.S., Optimization of Hydrothermal Pretreatment of Lignocellulosic Biomass in the Bioethanol Production Process, Chem.Sus.Chem., 6, 110122, 2013.
  • Zhang, Y., Lu, C., Tang, J., Yu, X., Lu, J., Meng, Q., Liu, D., Zheng, X. and Lin, F., Enhanced Saccharification of Steam Explosion Pretreated Corn Stover by The Supplementation of Thermoacidophilic Β-Glucosidase from a Newly İsolated Strain, Tolypocladium cylindrosporum syzx4, Afr. J. Mıcrobıol. Res., 5(17), 2413-2421, 20
  • Morjanoff, P.J. and Gray, P.P., Optimization of Steam Explosion as Method for İncreasing Susceptibility of Sugarcane Bagasse to Enzymatic Saccharification, Biotechnol. Bioeng., 29: 733– 741, 1987.
  • Chiaramonti, D., Prussi, M., Ferrero, S., Oriani, L., Ottonella, P., Torre, P. and Cherchi, F., Review of Pretreatment Processes for Lignocellulosic Ethanol Production, and Development of An İnnovative Method, Biomass Bioenerg., 46, 25-35, 2012.
  • Scott, F.; Quıntero, J.; Morales, M.; Conejeros, R.; Cardona, C., And Aroca, G. (2013). Process Design and Sustainability in the Production of Bioethanol from Lignocellulosic Materials. Electron. J. Biotechn., vol. 16, no. 3. http://dx.doi.org/10.2225/vol16-issue3-fulltext-7
  • Holtzapple, M.T., Humphrey, A.E. and Taylor, J.D., Energy Requirements for The Size Reduction of Poplar and Aspen Wood, Biotechnol. Bioeng., 33, 207-210, 1989.
  • Clark, T.A. and Mackie, K.L., Steam Explosion of The Soft-Wood Pinus Radiata with Sulphur Dioxide Addition, J. Wood Chem. Technol., 7, 373-403, 1987.
  • Mackie, K.L., Brownell, H.H., West, K.L. and Saddler, J.N., Effect of Sulphur Dioxide and Sulphuric Acid on Steam Explosion of Aspenwood, J. Wood Chem. Technol., 5, 405425, 1985.
  • Dale, B.E. and Moreira, M.J., A Freeze-Explosion Technique for İncreasing Cellulose Hydrolysis”, Biotechnol. Bioeng. Symp., 12, 31-43, 1982.
  • Sun Y. and Cheng J., Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review, Bioresource Technol., 8,: 1-11, 2002.
  • Eisenhuber, K., Jäger, A., Wimberger, J. and Kahr, H., Comparison of Different Pretreatment Methods for Straw for Lignocellulosic Bioethanol Production, Agron. Res, 11(1), 173-182, 2013.
  • Bari, I.D., Liuzzi, F., Villone, A. and Braccio, G., Hydrolysis of Concentrated Suspensions of Steam Pretreated Arundo donax, Appl. Energ., 102, 179189, 2013.
  • Amores, I., Ballesteros, I., Manzanares, P., Sáez, F., Michelena, G. and Ballesteros, M., Ethanol Production from Sugarcane Bagasse Pretreated by Steam Explosion, Electronic Journal of Energy & Environment, 1(1), 2013.
  • Vlasenko. E. Yu., Ding. H., Labovitch. J.M. and Shoemaker. S.P., Enzymatic Hydrolysis of Pretreated Rice Straw, Bioresource Technol., 59, 109-119, 1997.
  • Dale, B.E., Henk, L.L. and Shiang, M., Fermentation of Lignocellulosic Materials Treated by Ammonia Freze-Explosion, Dev. Ind. Microbiol., 26, 223-233,1984.
  • Hu, F., Ragauskas, A., Pretreatment and Lignocellulosic Chemistry, Bioenerg. Res., 5,1043-1066, 2012.
  • Bals, B. D., Teymouri, F., Campbell, T., Jin, M. and Dale, B. E., Low Temperature and Long Residence Time AFEX Pretreatment of Corn Stover, Bioenerg. Res., 5, 372-379, 2012.
  • Saritha, M., Arora, A. and Lata., Biological Pretreatment of Lignocellulosic Substrates for Enhanced Delignification and Digestibility, Indian. J. Microbiol., 52(2),122130, 2012.
  • Sarkar, N., Ghosh, S. K., Bannerjee, S. and Aikat, K., Bioethanol Production From Agricultural Wastes: An Overview, Renew. Energ., 37, 19-27, 20 Zheng Y.Z., Lin H.M. and Tsao G.T., Pretreatment for Cellulose Hydrolysis by Carbon Dioxide Explosion, Biotechnol. Prog., 14, 890896, 1998.
  • Temp, U., Eggert, C. and Eriksson, K. L., A Small-Scale Method for Screening of LigninDegrading Microorganisms, Appl. Environ. Microb., 60(4), 1548-1549, 1998.
  • Henriksson, G., Johansson, G. and Pettersson, G., A Critical Review of Cellobiose Dehydrogenases”, J. Biotechnol., 78, 93-113, 2000.
  • Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple M. and Ladisch M., Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass, Bioresource Technol., 96, 673-686, 2005.
  • Wariishi, H., Akileswaran, L. and Gold M.H., Manganese Peroxidase from The Basidiomycete Phanerochaete chrysosporium: Spectral Characterization of The Oxidized States and The Catalytic Cycle, Biochemistry, 27, 5365-5370, 19
  • Sayadı S. and Ellouz R., Roles of Lignin Peroxidase and Manganese Peroxidase from Phanerochaete Chrysosporium in The Decolorization of Olive Mill Wastewaters, Appl. Environ. Microb., 61(3), 1098-1103, 1995.
  • Blanchette, R.A., Delignification by Wood-Decay Fungi, Annu. Rev. Phytopathol., 29, 381-398, 19 Wan, C., Li, Y., Fungal Pretreatment of Lignocellulosic Biomass, Biotechnol. Adv., 30, 1447-1457, 2012.
  • Saritha, M., Arora, A., Singh, S. and Nain, L., Streptomyces griseorubens Mediated Delignification of Paddy Straw For İmproved Enzymatic Saccharification Yields, Bioresource Technol., 135, 12-17, 2012.
  • Kalia V.C. and Purohit H.J., Microbial Diversity and Genomics in Aid of Bioenergy, J.Ind. Microbiol. Biotechnol., 35, 403-419, 2008. Karimia, K., Kheradmandiniaa, S. and Taherzadeh, M.J., Conversion of Rice Straw to Sugars by Dilute-Acid Hydrolysis, Biomass Bioenerg., 30, 247-253, 2006.
  • Taherzadeh, M.J., Eklund, R., Gustafsson, L., Niklasson, C. and Liden, G., Characterization and Fermentation of Dilute Acid Hydrolyzates from Wood, Ind. Eng. Chem. Res., 36(11), 4659-4665, 19
  • Balat, M., Balat, H. and Öz, C., Progress in Bioethanol Processing, Prog. Energ. Combust., 34: 551-573, 2008.
  • NaseeruddiN, S., Yadav, K. S., Sateesh, L., Manikyam, A., Desai, S. and Rao, L. V., Selection of The Best Chemical Pretreatment For Lignocellulosic Substrate Prosopis juliflora, Bioresource Technol., 136, 542-549, 2013.
  • Kosaric, N., Wieczorirek, A., Cosentono, G.P., and Magee, R.J., Ethanol Fermentation in Biotechnology: A Comprehensive Treatise, Verlag. Chemie., 257-386, 1983.
  • Björling, T., and Lindman, B., Evaluation of Xlose-Fermenting Yeastfor Etanol Production from Spent Sulfite Liquor”, Enzyme Microb. Technol., 11(4), 240-246, 1989.
  • Kuhad, R. C., Gupta, R., Khasa, Y. P. and Singh, A., Bioethanol Production from Lantana camara (Red Sage): Pretreatment, Saccharification and Fermentation, Bioresource Technol., 101, 83488354, 2010.
  • Ziegler, M. T., Thomas, S. R. and Danna, K. J. Accumulation Of A Thermostable Endo-1,4 -DGlucanase in The Apoplast Of Arabidopsis thaliana Leaves, Mol. Breeding, 6, 37-46, 2000.
  • Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtas´ -Wasilewska, M., Cho, N., Hofrichter, M. and Rogalski, J., Biodegradation of Lignin by White Rot Fungi”, Fungal Genet. Biol., 27, 175-185, 1999.
  • Dashtban, M., Maki, M., Leung, K. T., Mao, C. and Qin, W., Cellulase Activities in Biomass Conversion: Measurement Methods and Comparison, Crit. Rev. Biotechnol., 1-8, 2010.
  • Gilbert, H. J. and Hazlewood, G. F., Bacterial Cellulase and Xylanases, J. Gen. Microbiol., 139, 187-194, 1993.
  • Mathew, G. M.,Sukumaran, R. K., Singhania, R. R. and Pandey, A., Progress in Research on Fungal Cellulases for Lignocellulose Degradation, J. Sci. Ind. Res. India., 67, 897907,2008.
  • Kuhad, R. C., Gupta, R. and Singh, A., Microbial Cellulases and Their Industrial Applications, Enzyme Research, 1-10, 2011.
  • Yamada, R., Nakatani, Y., Ogino, C. and Kondo, A., Efficient Direct Ethanol Production from Cellulose by Cellulase- and Cellodextrin Transporter-Co-Expressing Saccharomyces cerevisiae, AMB Express, 3(34), 2-7, 2013.
  • Xu, Q., Adney, W. S., Ding, S.-Y. and Himmel, M. E. Cellulases for Biomass Conversion, Industrial Enzymes, (Editör: Polaina. J., MacCabe, A. P.), Springer, Dordrecht, 35-50, 200 Fontes, C.M.G.A., Gilbert, H.J., Hazlewood, G.P., Clarke, J.H., Prates, J.A.M., McKie, V.A., Nagy, T., Fernandes, T.H. and Ferreira, M.A., A Novel Cellvibrio mixtus Family 10 Xylanase That İs Both İntracellular and Expressed Under Nonİnducing Conditions”, Microbiology, 146, 19591967, 2000.
  • Gallardo, O., Pastor, F. I. J., Polaina, J., Diaz, P., Tysek, R., Vogel, P., Isorna, P., Gonzales, B. and Sanz-Aparicio, J., Structural Insights into the Specificity of Xyn10B from Paenibacillus barcinonensis and Its Improved Stability by Forced Protein Evolution, J. Biol. Chem., 285( 4), 2721-2733, 2010.
  • Biely, P., Vrsanska, M., Tenkanen, M. and Kluepfel, D. “Endo-P - 1,4-xylanase families: differences in catalytic properties”, J. Biotechnol. 57: 151-166, 1997.
  • Wainİ, M. and Ingvorsen, K., Production of βXylanase and β -Xylosidase by The Extremely Halophilic Archaeon Halorhabdus utahensis, Extremophiles, 7, 87-93, 2003.
  • Martínez, G. A., Chaves, A. R. and Civello, P. M., β -Xylosidase Activity and Expression of a β Xylosidase Gene During Strawberry Fruit Ripening, Plant. Physiol. Bioch., 42, 89-96, 2004. Tuncer. M.,, Characterization of ß-Xylosidase and α-L-Arabinofuranosidase Activities from Thermomonospora Fusca BD25, Turk. J. Biol., 2, Gılead, S. and Shoham, Y., Purification and Characterization of α-L-Arabinofuranosidase from Bacillus stearothermophilus T-6, Appl. Environ. Microbiol., 60(1), 170-174, 1995.
  • Bronnenmeier, K., Meissner, H., Stocker, S. and Staudenbauer, W. L., α -D-Glucuronidases from The Xylanolytic Thermophiles Clostridium stercorarium and Thermoanaerobacterium saccharoticum, Microbiology, 141, 2033-2040, 19
  • Shallom, D. and Shoham, Y., Microbial Hemicellulases, Curr. Opin. Microbiol., 6, 219228, 2003.
  • Zakaria, M. M., Ashiuchi, M. and Yamamoto, S., Optimization for β Mannanase Production of A Psychrophilic Bacterium, Flavobacterium sp., Biosci. Biotechnol, Biochem., 62(4), 655-660, 19 Howard, R.L., Abotsi E., Jansen van Rensburg E.L. and Howard S., Lignocellulose Biotechnology: İssues of Bioconversion and Enzyme Production, Afr. J. Biotechnol., 2(12), 602-619, 2003.
  • Tabka, M. G., Herpoel-Gimbert, I., Monod, F., Asther, M. And Sigoillot, J. C., Enzymatic Saccharification Of Wheat Straw for Bioethanol Production by a Combined Cellulase Xylanase and Feruloyl Esterase Treatment, Enzyme Microbial. Technol., 39, 897-902, 2006.
  • Fang, Z., Li, T., Wang, Q., Zhang, X., Peng, H., Fang, W., Hong, Y., Ge, H. and Xiao, Y., A Bacterial Laccase from Marine Microbial Metagenome Exhibiting Chloride Tolerance and Dye Decolorization Ability, Appl. Microbiol. Biotechnol., 8,: 1103-1110, 2011.
  • Ruijssenaars, H. J. and Hartmans, S., A Cloned Bacillus halodurans Multicopper Oxidase Exhibiting Alkaline Laccase Activity, Appl. Microbiol. Biotechnol., 65, 177-182, 2004.
  • Lakshmipathy, D. T. and Kannabiran, K., A Morphological, Biochemical and Biological Studies of Halophilic Streptomyces sp. Isolated from Saltpan Environment, Am. J. Infect. Dis., 5(3), 200-206, 2009.
  • Reiss, R., Ihssen, J. and Thöny-Meyer, L., Bacillus pumilus Laccase: A Heat Stable Enzyme with A Wide Substrate Spectrum”, B.M.C. Biotechnology, 11(9), 1-11, 2011.
  • Liu, Z., Zhang, D., Hua, Z., Li, J., Du, G. and Chen, J., A Newly İsolated Paecilomyces sp. WSH-L07 for Laccase Production: İsolation, İdentification, and Production Enhancement by Complex İnducement, J. Ind. Microbiol. Biotechnol., 36, 1315-1321, 2009.
  • Durán, N., Rosa, M. A., D’Annibale, A. and Gianfreda, L., Applications of Laccases and Tyrosinases (Phenoloxidases) İmmobilized on Different Supports: A Review, Enzyme Microb. Tech., 31, 907-931, 2002.
  • Lante, A., Crapisi, A., Krastanov, A. and Spettoli, P., Biodegradation of Phenols by Laccase İmmobilised in a Membrane Reactor, Process Biochem., 36, 51-58, 2000.
  • Suzuki, T., Endo, K., Ito, M., Tsujibo H., Miyomoto, K. and Inamorİ, Y., A Termostable Laccase from Streptomyces lavendulae REN7: Purufication, Characterization, Nucleotid Sequence, Expression, Biosci. Biotechnol. Bioschem., 67(10), 2167-2175, 2003.
  • Suresh, P. S., Kumar, A., Kumar, R. and Singh, V. P., An Insilco Approach to Bioremediation: Laccase as a Case Study, J. Mol. Graph. Model., 26, 845-849, 2008.
  • Ramachandra, M., Crawford, D. L. and Hertel, G., Characterization of an Extracellular Lignin Peroxidase of the Lignocellulolytic Actinomycete Streptomyces viridosporust, Appl. Environ. Microb., 54(12), 3057-3063, 1988.
  • Narayana, K. J. P., Prabhakar, P., Vijayalakshmi, V., Venkateswarlu, Y. and Krishna, P. S. J., Biologycal Activity of Phenylpropionic Acid İsolated from a Terrestrial Streptomyces, Pol. J. Microb., 56(3), 191-197, 2007.
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-4048
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1997
  • Yayıncı: Sakarya Üniversitesi Fen Bilimleri Enstitüsü